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Chapter 1 Administration 
1.1* Scope. 
1.1.1  This standard contains minimum requirements for carbon dioxide fire-
extinguishing systems. 
1.1.2  It includes only the necessary essentials to make the standard workable in the 
hands of those skilled in this field. 
1.2 Purpose. 
1.2.1  This standard is prepared for the use and guidance of those charged with the 
purchasing, designing, installing, testing, inspecting, approving, listing, operating, or 
maintaining of carbon dioxide fire-extinguishing systems, in order that such 
equipment will function as intended throughout its life. 
1.2.2  Nothing in this standard is intended to restrict new technologies or alternative 
arrangements, provided the level of safety prescribed by the standard is not lowered. 
1.2.3  Only those with the proper training and experience shall design, install, inspect, 
and maintain this equipment. 
1.3 Retroactivity. 
The provisions of this standard reflect a consensus of what is necessary to provide an 
acceptable degree of protection from the hazards addressed in this standard at the time 
the standard was issued. 
1.3.1  Unless otherwise specified, the provisions of this standard shall not apply to 
facilities, equipment, structures, or installations that existed or were approved for 
construction or installation prior to the effective date of the standard. Where specified, 
the provisions of this standard will be retroactive. 
1.3.2  In those cases where the authority having jurisdiction determines that the 
existing situation presents an unacceptable degree of risk, the authority having 
jurisdiction shall be permitted to apply retroactively any portions of this standard 
deemed appropriate. 
1.3.3  The retroactive requirements of this standard shall be permitted to be modified 
if their application clearly would be impractical in the judgment of the authority 
having jurisdiction and only where it is clearly evident that a reasonable degree of 
safety is provided. 
1.3.4  Existing systems shall be upgraded to meet the requirements for safety signs in 
4.3.2, lock-out valves in 4.3.3.6 and 4.3.3.6.1, and pneumatic time delays and 
pneumatic predischarge alarms in 4.5.6.1. 
1.3.5*  These upgrades shall be completed by August 7, 2006. 
1.4* Units. 
Metric units of measurement in this standard are in accordance with the modernized 
metric system known as the International System of Units (SI), as shown in Table 
A.1.4. 
Chapter 2 Referenced Publications 
2.1 General. 
The documents or portions thereof listed in this chapter are referenced within this 
standard and shall be considered part of the requirements of this document. 
2.2 NFPA Publications. 
National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471. 
NFPA 70, National Electrical Code®, 2005 edition. 
NFPA 72®, National Fire Alarm Code®, 2002 edition. 



2.3 Other Publications. 
2.3.1 ANSI Publications.  
American National Standards Institute, Inc., 25 West 43rd Street, 4th Floor, New 
York, NY 10036. 
ANSI/IEEE C 2, National Electrical Safety Code, 2002. 
MNBV/ANSI Z535, Standard for Environmental and Facility Safety Signs, 2002. 
2.3.2 API Publication.  
American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005-4070. 
API-ASME Code for Unfired Pressure Vessels for Petroleum Liquids and Gases, Pre–
July 1, 1961. 
2.3.3 ASME Publication.  
American Society of Mechanical Engineers, Three Park Avenue, New York, NY 
10016-5990. 
ASME B31.1, Power Piping Code, 2001. 
2.3.4 ASTM Publications.  
American Society for Testing and Materials, 100 Barr Harbor Drive, West 
Conshohocken, PA 19428-2959. 
ASTM A 53, Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-
Coated, Welded and Seamless, 2004. 
ASTM A 106, Standard Specification for Seamless Carbon Steel Pipe for High-
Temperature Service, 2002. 
ASTM A 120, Specification for Welded and Steel Pipe, 1996. 
ASTM A 182, Standard Specification for Forged or Rolled Alloy-Steel Pipe Flanges, 
Forged Fittings, and Valves and Parts for High-Temperature Service, 2004. 
2.3.5 CGA Publication.  
Compressed Gas Association, 4221 Walney Road, 5th Floor, Chantilly, VA 20151-
2923. 
CGA G6.2, Commodity Specification for Carbon Dioxide, 2004. 
2.3.6 CSA Publication.  
Canadian Standards Association, 5060 Spectrum Way, Mississauga, Ontario L4W 
5N6, Canada. 
CSA C22.1, Canadian Electrical Code, 2002. 
2.3.7 U.S. Government Publications.  
U.S. Government Printing Office, Washington, DC 20402. 
Title 46, Code of Federal Regulations, Part 58.20. 
Title 46, Code of Federal Regulations, Part 72. 
Title 49, Code of Federal Regulations, Parts 171–190 (Department of Transportation). 
Bureau of Mines Bulletins 503 and 627, Limits of Flammability of Gases and Vapors 
(Department of Transportation), 1962. 
Chapter 3 Definitions 
3.1 General. 
The definitions contained in this chapter shall apply to the terms used in this standard. 
Where terms are not defined in this chapter or within another chapter, they shall be 
defined using their ordinarily accepted meanings within the context in which they are 
used. Merriam-Webster's Collegiate Dictionary, 11th edition, shall be the source for 
the ordinarily accepted meaning. 
3.2 NFPA Official Definitions. 
3.2.1* Approved. Acceptable to the authority having jurisdiction. 



3.2.2* Authority Having Jurisdiction (AHJ). An organization, office, or individual 
responsible for enforcing the requirements of a code or standard, or for approving 
equipment, materials, an installation, or a procedure. 
3.2.3 Labeled. Equipment or materials to which has been attached a label, symbol, or 
other identifying mark of an organization that is acceptable to the authority having 
jurisdiction and concerned with product evaluation, that maintains periodic inspection 
of production of labeled equipment or materials, and by whose labeling the 
manufacturer indicates compliance with appropriate standards or performance in a 
specified manner. 
3.2.4* Listed. Equipment, materials, or services included in a list published by an 
organization that is acceptable to the authority having jurisdiction and concerned with 
evaluation of products or services, that maintains periodic inspection of production of 
listed equipment or materials or periodic evaluation of services, and whose listing 
states that either the equipment, material, or service meets appropriate designated 
standards or has been tested and found suitable for a specified purpose. 
3.2.5 Shall. Indicates a mandatory requirement. 
3.2.6 Should. Indicates a recommendation or that which is advised but not required. 
3.2.7 Standard. A document, the main text of which contains only mandatory 
provisions using the word “shall” to indicate requirements and which is in a form 
generally suitable for mandatory reference by another standard or code or for adoption 
into law. Nonmandatory provisions shall be located in an appendix or annex, footnote, 
or fine-print note and are not to be considered a part of the requirements of a standard. 
3.3 General Definitions. 
3.3.1 Alarms and Indicators. Any device capable of providing audible, visual, or 
olfactory indication. 
3.3.2 Inspection. A visual examination of a system or portion thereof to verify that it 
appears to be in operating condition and is free of physical damage. [820, 2003] 
3.3.3 Lock-Out. A manually operated valve in the discharge pipe between the nozzles 
and the supply, which can be locked in the closed position to prevent flow of carbon 
dioxide to the protected area. 
3.3.4 Maintenance. Work performed to ensure that equipment operates as directed by 
the manufacturer. [10, 2002] 
3.3.5 Normally Occupied. An enclosure where, under normal circumstances, persons 
are present. 
3.3.6* Normally Unoccupied. An area or space not normally occupied by people but 
could be entered occasionally for brief periods. 
3.3.7 Occupiable. See 3.3.6, Normally Unoccupied. 
3.3.8 Pressure.  
3.3.8.1* High Pressure. Indicates that the carbon dioxide is stored in pressure 
containers at ambient temperatures. 
3.3.8.2* Low Pressure. Indicates that the carbon dioxide is stored in pressure 
containers at a controlled low temperature of 0°F (-18°C). 
3.3.9 Standpipe System and Mobile Supply. A system consisting of a mobile supply 
of carbon dioxide, designed to be quickly moved into position and connected to a 
system of fixed piping, supplying fixed nozzles or hose lines or both that are designed 
for either total flooding or local application. 
3.3.10 System.  
3.3.10.1 Hand Hose Line System. A hose and nozzle assembly connected by fixed 
piping or connected directly to a supply of extinguishing agent. [122, 2004] 



3.3.10.2 Local Application System. A system consisting of a supply of extinguishing 
agent arranged to discharge directly on the burning material. 
3.3.10.3* Pre-Engineered System. A system that has predetermined flow rates, nozzle 
placement, and quantities of carbon dioxide and that incorporates specific nozzles and 
methods of application that can differ from those detailed elsewhere in this standard 
and those that are listed by a testing laboratory. 
3.3.10.4 Total Flooding System. A system consisting of a supply of carbon dioxide 
arranged to discharge into, and fill to the proper concentration, an enclosed space or 
enclosure around the hazard. 
3.3.11 Unoccupiable. An enclosure that cannot be occupied due to dimensional or 
other physical constraints. 
3.4 Special Definitions. 
3.4.1 Marine Systems. Systems installed on ships, barges, offshore platforms, 
motorboats, and pleasure craft. 
3.4.2 Space.  
3.4.2.1 Cargo Space. A space for the carriage or storage of items or products that are 
transported by the vessel. 
3.4.2.2 Electrical Equipment Space. A space containing electrical propulsion, power 
generating, or power distribution equipment. 
3.4.2.3 Machinery Space. A space that contains mechanical equipment for handling, 
pumping, or transferring flammable or combustible liquids as a fuel. 
3.4.2.4 Vehicle Space. A space that is designed for the carriage of automobiles or 
other self-propelled vehicles. 
Chapter 4 General Information 
4.1 Restrictions for Normally Occupied Enclosures. 
4.1.1*  Carbon dioxide total flooding fire-extinguishing systems shall not be installed 
in normally occupied enclosures except as permitted in 4.1.2 through 4.1.4. 
4.1.2 New Installations. Total flooding carbon dioxide systems shall be permitted to 
be installed in normally occupied enclosures where there are no suitable fire-
extinguishing agents that can be used to provide an equivalent level of fire protection 
to that of carbon dioxide. 
4.1.2.1  If it is determined that carbon dioxide is be used for a given application, the 
designer/installer shall provide supporting documentation to the authority having 
jurisdiction to verify that carbon dioxide is the most appropriate fire suppression agent 
for the application. 
4.1.3 Marine Applications. Manually operated total flooding marine systems shall be 
permitted to be installed in normally occupied enclosures equipped with the 
following:                                                  
(1)  System lock-out valves specified in 4.5.5 
(2)  Pneumatic predischarge alarms and pneumatic time delays specified in 9.3.3.5 
(3)  Two independent, manually operated system discharge control valves to 
actuate the carbon dioxide system as specified in 9.3.3                                                
4.1.4 Existing Systems. Existing total flooding carbon dioxide systems shall be 
permitted in normally occupied enclosures equipped with system lock-out valves, 
pneumatic predischarge alarms, and pneumatic time delays specified in 4.5.6. 
4.2 Carbon Dioxide Use and Limitations. 
See also Annex G. 
4.2.1*  Carbon dioxide fire-extinguishing systems protecting areas where explosive 
atmospheres could exist shall utilize metal nozzles, and the entire system shall be 
grounded. 



4.2.2  In addition, objects exposed to discharge from carbon dioxide nozzles shall be 
grounded to dissipate possible electrostatic charges. 
4.3* Personnel Safety. 
4.3.1* Hazards to Personnel. 
4.3.1.1  Consideration shall be given to the possibility of carbon dioxide drifting and 
settling into adjacent places outside the protected space. (See 4.3.1.3.) 
4.3.1.2  Consideration shall also be given to where the carbon dioxide can migrate or 
collect in the event of a discharge from a safety relief device of a storage container. 
4.3.1.3*  In any use of carbon dioxide, consideration shall be given to the possibility 
that personnel could be trapped in or enter into an atmosphere made hazardous by a 
carbon dioxide discharge. 
4.3.1.3.1  Safeguards shall be provided to ensure prompt evacuation, to prevent entry 
into such atmospheres as described in 4.3.1.3, and to provide means for prompt rescue 
of any trapped personnel. 
4.3.1.3.2  Personnel training shall be provided. 
4.3.2 Signs. 
4.3.2.1  Warning signs shall be affixed in a conspicuous location in every protected 
space; at every entrance to protected spaces; in spaces near the protected spaces where 
it is determined that carbon dioxide could migrate, creating a hazard to personnel; and 
at each entrance to carbon dioxide storage rooms and where carbon dioxide can 
migrate or collect in the event of a discharge from a safety device of a storage 
container. 
4.3.2.2  For all new system installations, the safety sign format, color, letter style of 
signal words, message panel lettering, lettering size, and the safety provisions of 
symbols shall be in accordance with ANSI Z535, Standard for Environmental and 
Facility Safety Signs. 
4.3.2.3  Safety signs and message wording shall be provided using a three-panel 
format as follows: 
4.3.2.3.1  The sign in Figure 4.3.2.3.1 shall be used in every protected space. 
 
FIGURE 4.3.2.3.1  Sign in Every Protected Space. 
4.3.2.3.2  The sign in Figure 4.3.2.3.2 shall be used at every entrance to protected 
space. 
 
FIGURE 4.3.2.3.2  Sign at Every Entrance to Protected Space. 
4.3.2.3.3  The sign in Figure 4.3.2.3.3 shall be used at every entrance to protected 
space for systems provided with a wintergreen odorizer. 
 
FIGURE 4.3.2.3.3  Sign at Every Entrance to Protected Space for Systems Provided 
with a Wintergreen Odorizer. 
4.3.2.3.4  The sign in Figure 4.3.2.3.4 shall be used in every nearby space where 
carbon dioxide could accumulate to hazardous levels. 
 
FIGURE 4.3.2.3.4  Sign in Every Nearby Space Where Carbon Dioxide Can 
Accumulate to Hazardous Levels. 
4.3.2.3.5  The sign in Figure 4.3.2.3.5 shall be used outside each entrance to carbon 
dioxide storage rooms. 
 
FIGURE 4.3.2.3.5  Sign Outside Each Entrance to Carbon Dioxide Storage Rooms. 
4.3.2.3.6 Signs for Manual Operation. 



4.3.2.3.6.1  Warning signs shall be placed at every location where manual operation 
of the system can occur. 
4.3.2.3.6.2  The sign in Figure 4.3.2.3.6.2 shall be used at each manual actuation 
station. 
 
FIGURE 4.3.2.3.6.2  Sign at Each Manual Actuation Station. 
4.3.2.4  For existing system installations that have existing signs that meet the 
requirements of 4.3.2.1, the signage shall be considered to be acceptable if the facility 
has an effective training program in place covering all suppression system–related 
signage, with all personnel with access to the protected space either trained on the 
signage or accompanied at all times by a person who has received the intended 
training. 
4.3.3 Evacuation Procedures. 
4.3.3.1  All persons who can at any time enter a space protected by carbon dioxide 
shall be warned of the hazards involved and provided with safe evacuation 
procedures. (See 4.5.6.) 
4.3.3.1.1*  Visual and audible devices shall be located at the entrance to each 
occupiable space protected by a carbon dioxide system and at the entrance to each 
space where carbon dioxide could migrate, creating a hazard to personnel. Provisions 
shall be made to prohibit entry of unprotected personnel to spaces made unsafe by a 
carbon dioxide discharge until the space is ventilated and appropriate tests of the 
atmosphere have verified that it is safe for unprotected persons to enter. Persons who 
are not properly trained in the use of and equipped with self-contained breathing 
apparatus (SCBA) shall not remain in spaces where the concentration exceeds 4 
percent. Such provisions shall include one or more of the following:                                                  
(1)  Addition of a distinctive odor to the discharging carbon dioxide, the detection 
of which serves as an indication to persons that carbon dioxide gas is present 
(Personnel shall be trained to recognize the odor and evacuate spaces wherein the 
odor is detected.) 
(2)  Provision of automatic alarms at the entry to and within such spaces, which 
alarms are activated by carbon dioxide detectors or oxygen detectors 
(3)  Establishment and enforcement of confined space entry procedures for such 
areas                                                
4.3.3.1.2  The visual alarms required by 4.3.3.1.1 shall be permitted to serve this 
purpose if they are left operating until the space is ventilated and the safety of the 
atmosphere for entry by unprotected persons has been verified. 
4.3.3.1.3  The operation of electrically operated warning devices shall be continued 
after agent discharge until positive action has been taken regarding the alarm and 
prevention of exposure of personnel to hazardous concentrations. 
4.3.3.2  The predischarge warning signal shall provide a time delay to allow for 
evacuation under worst-case conditions, except as noted in 4.5.1.3 and 4.5.6.1. 
4.3.3.3  Dry runs shall be made to determine the minimum time needed for persons to 
evacuate the hazard area, allowing time to identify the warning signal. 
4.3.3.4  Audible and visual predischarge signals shall be provided, except as noted in 
4.5.1.3 and 4.5.6.1. 
4.3.3.5*  All personnel shall be informed that discharge of carbon dioxide gas from 
either high- or low-pressure systems directly at a person will endanger the person's 
safety by causing eye injury, ear injury, or even falls due to loss of balance upon the 
impingement of the high-velocity discharging gas. 



4.3.3.6  A lock-out shall be provided on all systems except where dimensional 
constraints prevent personnel from entering the protected space. 
4.3.3.6.1  Lock-out valves shall be installed on all systems where carbon dioxide 
could migrate, creating a hazard to personnel. 
4.3.3.6.2*  Systems shall be locked out under the following conditions:                                                  
(1)  When persons not familiar with the systems and their operation are present in 
a protected space 
(2)  When persons are present in locations where discharge of the system will 
endanger them, and they will be unable to proceed to a safe location within the time-
delay period for the system                                                
4.3.3.6.3  When maintenance or testing is being conducted on the system, it shall be 
locked out or the protected space and affected spaces (migration) shall be evacuated. 
4.3.3.6.4  When protection is to be maintained during the lock-out period, a person(s) 
shall be assigned as a “fire watch” with suitable portable or semiportable fire-fighting 
equipment or means to restore protection. 
4.3.3.6.4.1  The fire watch shall have a communication link to a constantly monitored 
location. 
4.3.3.6.4.2  Authorities responsible for continuity of fire protection shall be notified of 
lock-out and subsequent restoration of the system. 
4.3.3.7  For electrically operated systems, a service disconnect switch shall be 
provided. 
4.3.3.8*  Safe handling procedures shall be followed when transporting system 
cylinders. 
4.3.4 Electrical Clearances. 
4.3.4.1*  All system components shall be located so as to maintain minimum 
clearances from live parts as shown in Table 4.3.4.1 and Figure 4.3.4.1. 
 
Table 4.3.4.1  Clearance from Carbon Dioxide Equipment to Live Uninsulated 
Electrical Components  
    
Minimum†  
 Clearance  
Nominal System Voltage 
(kV)  Maximum System Voltage 
(kV) Design BIL* 
 (kV) in. mm  
13.8 14.5 110 7 178  
23.0 24.3 150 10 254  
34.5 36.5 200 13 330  
46.0 48.3 250 17 432  
69.0 72.5 350 25 635  
115.0 21.0 550 42 1067  
138.0 145.0 650 50 1270  
161.0 169.0 750 58 1473  
230.0 242.0 900 76 1930  
  1050 84 2134  
345.0 362.0 1050 84 2134  
  1300 104 2642  
500.0 550.0 1500 124 3150  
  1800 144 3658  



765.0 800.0 2050 167 4242  
*Basic insulation level (BIL) values are expressed as kilovolts (kV), the number being 
the crest value of the full wave impulse test that the electrical equipment is designed 
to withstand. For BIL values that are not listed in the table, clearances can be found 
by interpolation. 
†For voltages up to 161 kV, the clearances are taken from NFPA 70. For voltages 230 
kV and above, the clearances are taken from Table 124 of ANSI/IEEE C2. In Canada, 
refer to CSA C22.1.  
 
 
FIGURE 4.3.4.1  Clearance from Carbon Dioxide Equipment to Live Uninsulated 
Electrical Components. 
4.3.4.2*  At altitudes in excess of 3300 ft (1000 m), the clearance shall be increased at 
the rate of 1 percent for each 330 ft (100 m) increase in altitude above 3300 ft (1000 
m). 
4.3.4.3*  To coordinate the required clearance with the electrical design, the design 
basic insulation level (BIL) of the equipment being protected shall be used as a basis, 
although this is not material at nominal line voltages of 161 kV or less. 
4.3.4.4*  The selected clearance to ground shall satisfy the greater of switching surge 
or BIL duty, rather than be based on nominal voltage. 
4.3.4.5  The clearance between uninsulated energized parts of the electrical system 
equipment and any portion of the carbon dioxide system shall be not less than the 
minimum clearance provided elsewhere for electrical system insulations on any 
individual component. 
4.3.4.6  When the design BIL is not available, and when nominal voltage is used for 
the design criteria, the highest minimum clearance listed for this group shall be used. 
4.3.5* Duration of Protection. An effective agent concentration for total flooding 
systems shall be achieved and maintained for a period of time to allow effective 
emergency action by trained personnel. 
4.4 Specifications, Plans, and Approvals. 
4.4.1 Specifications. 
4.4.1.1  Specifications for carbon dioxide fire-extinguishing systems shall be prepared 
under the supervision of a person fully experienced and qualified in the design of 
carbon dioxide extinguishing systems and with the advice of the authority having 
jurisdiction. 
4.4.1.2  The specifications shall include all pertinent items necessary for the design of 
the system such as the designation of the authority having jurisdiction, variances from 
the standard to be permitted by the authority having jurisdiction, and the type and 
extent of the approval testing to be performed after installation of the system. 
4.4.2 Plans. 
4.4.2.1  Plans and calculations shall be submitted for approval to the authority having 
jurisdiction before the installation begins. 
4.4.2.2  Plans and calculations shall be prepared by persons fully qualified in the 
design of carbon dioxide fire-extinguishing systems. 
4.4.2.3  These plans shall be drawn to an indicated scale or be dimensioned. 
4.4.2.4  The plans shall be made so that they can be easily reproduced. 
4.4.2.5  These plans shall contain sufficient detail to enable the authority having 
jurisdiction to evaluate the hazard or hazards and to evaluate the effectiveness of the 
system. 
4.4.2.6  The details shall include the following:                                                  



(1)  Materials involved in the protected hazards 
(2)  Location of the hazards 
(3)  Enclosure or limits and isolation of the hazards 
(4)  Surrounding area that could affect the protected hazards                                                
4.4.2.7  The details on the system shall include the following:                                                  
(1)  Information and calculations on the amount of carbon dioxide 
(2)  Location and flow rate of each nozzle, including equivalent orifice area 
(3)  Location, size, and equivalent lengths of pipe, fittings, and hose 
(4)  Location and size of the carbon dioxide storage facility                                                
4.4.2.8  Details of pipe size reduction method (reducing couplings or bushings) and 
orientation of tees shall be clearly indicated. 
4.4.2.9  Information shall be submitted pertaining to the location and function of the 
detection devices, operating devices, auxiliary equipment, and electrical circuitry, if 
used. 
4.4.2.10  Information shall be indicated to identify the apparatus and devices used. 
4.4.2.11  Any special features shall be adequately explained. 
4.4.2.12  When field conditions necessitate any substantial change from approved 
plans, the change shall be submitted to the authority having jurisdiction for approval. 
4.4.2.13  When such changes from approved plans as described in 4.4.2.12 are made, 
corrected “as-installed” plans shall be supplied to the owner and the authority having 
jurisdiction. 
4.4.2.14  The system owner shall maintain an instruction and maintenance manual 
that includes a full sequence of operation, and a full set of system drawings and 
calculations shall be maintained in a protective enclosure. 
4.4.3* Approval of Installations. 
4.4.3.1  The completed system shall be inspected, tested, and documented by qualified 
personnel to meet the approval of the authority having jurisdiction. 
4.4.3.2  Only listed or approved equipment and devices shall be used in the system. 
4.4.3.3  To determine that the system has been properly installed and will function as 
specified, the procedures given in 4.4.3.3.1 through 4.4.3.3.4.2 shall be performed. 
4.4.3.3.1 Visual Inspection. A thorough visual inspection of the installed system and 
hazard area shall be conducted. 
4.4.3.3.1.1  The piping, operational equipment, and discharge nozzles shall be 
inspected for proper size and location. 
4.4.3.3.1.2  The locations of alarms and manual emergency releases shall be 
confirmed. 
4.4.3.3.1.3  The configuration of the hazard shall be compared to the original hazard 
specification. 
4.4.3.3.1.4  The hazard shall be inspected closely for unclosable openings and sources 
of agent loss that could have been overlooked in the original specification. 
4.4.3.3.2 Labeling. 
4.4.3.3.2.1  A check of labeling of devices for proper designations and instructions 
shall be performed. 
4.4.3.3.2.2  Nameplate data on the storage containers shall be compared to 
specifications. 
4.4.3.3.3 Operational Tests. Nondestructive operational tests on all devices necessary 
for functioning of the system, including detection and actuation devices, shall be 
conducted. 
4.4.3.3.4 Full Discharge Test. 
4.4.3.3.4.1  A full discharge test shall be performed on all systems. 



4.4.3.3.4.2  Where multiple hazards are protected from a common supply, a full 
discharge test shall be performed for each hazard. 
4.4.3.4  Prior to testing, safety procedures shall be reviewed. (See Section 4.4.) 
4.4.4 Testing of Systems. Systems shall be tested as stated in 4.4.4.1 through 4.4.4.3. 
4.4.4.1 Local Application. A full discharge of the design quantity of carbon dioxide 
through system piping shall be conducted to ensure that carbon dioxide effectively 
covers the hazard for the full period of time required by the design specifications and 
that all pressure-operated devices function as intended. 
4.4.4.2 Total Flooding. A full discharge of the entire design quantity of carbon 
dioxide through system piping shall be conducted to ensure that carbon dioxide is 
discharged into the hazard, that the concentration is achieved and maintained in the 
period of time required by the design specifications, and that all pressure-operated 
devices function as intended. 
4.4.4.3 Hand-Held Hose Lines. 
4.4.4.3.1  A full discharge test of hand-held hose line systems shall be conducted. 
4.4.4.3.2  Evidence of liquid flow from each nozzle with an adequate pattern of 
coverage shall be required. 
4.5 Detection, Actuation, and Control. 
4.5.1 Classification. Systems shall be classified as automatic or manual in accordance 
with the methods of actuation described in 4.5.1.1 through 4.5.1.3.2. 
4.5.1.1 Automatic Operation. Operation that does not require any human action shall 
be considered automatic operation. 
4.5.1.2 Normal Manual Operation. 
4.5.1.2.1  Operation of the system requiring human action where the location of the 
device used to cause operation makes it easily accessible at all times to the hazard 
shall be considered normal manual operation. (See 4.5.4.4.) 
4.5.1.2.2  Operation of one control shall be all that is required to bring about the full 
operation of the system. 
4.5.1.3* Emergency Manual Operation. 
4.5.1.3.1  Operation of the system by human means where the device used to cause 
operation is fully mechanical in nature and is located at or near the device being 
controlled shall be considered emergency manual operation. 
4.5.1.3.2  A fully mechanical device shall be permitted to incorporate the use of 
system pressure to complete operation of the device. (See 4.5.4.5.) 
4.5.2* Automatic Detection and Automatic Actuation. Automatic detection and 
automatic actuation shall be used, except in the following situations:                                                  
(1)  Manual-only actuation shall be permitted if acceptable to the authority having 
jurisdiction where automatic release could result in an increased risk. 
(2)  Automatic detection and automatic actuation shall not apply to hand hose line 
and standpipe systems. 
(3)  Automatic detection and automatic actuation shall not apply to marine 
systems. (See 9.3.3.)                                                
4.5.2.1*  Automatic actuation controls shall be arranged to require a sustained fire 
alarm initiation signal prior to actuation of predischarge alarms and require actuation 
of any electrically operated predischarge time delays and electrically operated 
predischarge alarms prior to actuation of releasing devices. 
4.5.3* Automatic Detection. Automatic detection shall be by any listed or approved 
method or device that is capable of detecting and indicating heat, flame, smoke, 
combustible vapors, or an abnormal condition in the hazard such as process trouble 
that is likely to produce fire. 



4.5.4 Operating Devices. Operating devices shall include carbon dioxide releasing 
devices or valves, discharge controls, and equipment shutdown devices, all of which 
are necessary for successful performance of the system. 
4.5.4.1 Listed and Approved. 
4.5.4.1.1  Operation shall be by listed or approved mechanical, electrical, or 
pneumatic means. 
4.5.4.1.2  The control equipment shall be specifically listed or approved for the 
number and type of actuating devices utilized, and their compatibility shall be listed 
or approved. 
4.5.4.2 Device Design. 
4.5.4.2.1  All devices shall be designed for the service they will encounter and shall 
not be readily rendered inoperative or susceptible to accidental operation. 
4.5.4.2.2  Devices shall be normally designed to function from -20°F to 150°F (-29°C 
to 66°C) or marked to indicate temperature limitations. 
4.5.4.3  All devices shall be located, installed, or protected so that they are not subject 
to mechanical, chemical, or other damage that would render them inoperative. 
4.5.4.4*  The normal manual controls for actuation shall be located for easy 
accessibility at all times, including the time of fire. 
4.5.4.4.1  The manual control(s) shall be of distinct appearance and clearly 
recognizable for the purpose intended. 
4.5.4.4.2  The manual control(s) shall cause the complete system to operate in its 
normal fashion. 
4.5.4.4.3  Operation of this manual control shall not cause the time delay to recycle. 
(See 4.3.3.2.) 
4.5.4.5*  All valves controlling the release and distribution of carbon dioxide shall be 
provided with an emergency manual control. 
4.5.4.5.1  The emergency manual control shall not be required of slave high-pressure 
cylinders. 
4.5.4.5.2  The emergency means shall be easily accessible and located close to the 
valves controlled. 
4.5.4.5.3  These devices shall be clearly marked with a warning placard to indicate the 
concept in 4.5.4.5.2. 
4.5.4.6* Cylinders. 
4.5.4.6.1  Where gas pressure from pilot cylinders fed through the system discharge 
manifold (i.e., using back pressure rather than a separate pilot line) is used to release 
remaining slave cylinders and the supply consists of fewer than three cylinders, one 
cylinder shall be used for such operation. 
4.5.4.6.2  Where the supply consists of three cylinders or more, there shall be one 
pilot cylinder more than the minimum required to actuate the system. 
4.5.4.6.3  During the full discharge acceptance test, the extra pilot cylinder shall be 
arranged to operate as a slave cylinder. 
4.5.4.6.4*  Automatic actuation controls shall be arranged as follows:                                                  
(1)  To require a sustained fire alarm initiation signal prior to activation of 
predischarged alarms. 
(2)  To require activation of any electrically operated predischarge time delays and 
electrically operated predischarge alarms prior to activation of releasing devices. 
4.5.4.7 Manual Controls. 
4.5.4.7.1  Manual controls shall not require a pull of more than 40 lb (force) (178 N) 
nor a movement of more than 14 in. (356 mm) to secure operation. 



4.5.4.7.2  At least one manual control for actuation shall be positioned not more than 
4 ft (1.2 m) above the floor. 
4.5.4.8  Where the continuing operation of equipment associated with a hazard being 
protected could contribute to sustaining the fire in that hazard, the source of power or 
fuel shall be automatically shut off. 
4.5.4.8.1  All shutdown devices shall be considered integral parts of the system and 
shall function with the system operation. 
4.5.4.8.2  The requirement in 4.5.4.8 shall not apply to lubricating oil systems 
associated with large rotating equipment, where an extended discharge system is 
provided that is designed to operate for the deceleration/cooldown period. 
4.5.4.9  All manual operating devices shall be identified as to the hazard they protect, 
the function they perform, and their method of operation. 
4.5.4.10  Abort switches shall not be used on carbon dioxide systems. 
4.5.4.11 Discharge Pressure Switch. 
4.5.4.11.1  A discharge pressure switch shall be installed between the carbon dioxide 
supply and the lock-out valve. 
4.5.4.11.2  The discharge pressure switch shall provide an alarm initiating signal to 
the releasing panel to operate electric/electronic alarm appliances. 
4.5.5 Supervision and Lock-Out Valves. 
4.5.5.1  Supervision of automatic systems and manual lock-out valves shall be 
provided unless specifically waived by the authority having jurisdiction. 
4.5.5.2  Supervision of automatic systems shall be provided, and the lock-out required 
by 4.3.3.6 shall be supervised for both automatic and manual systems unless 
specifically waived by the authority having jurisdiction. 
4.5.5.3*  Interconnections between the components that are necessary for the control 
of the system and life safety shall be supervised. 
4.5.5.4  An open circuit, ground-fault condition, or loss of integrity in the pneumatic 
control lines that would impair full system operation shall result in a trouble signal. 
4.5.5.5  The alarm and trouble signals shall be transmitted by one of the methods 
described in NFPA 72, National Fire Alarm Code. 
4.5.5.6  High-pressure pneumatic-operated slave cylinder connections immediately 
adjacent to pilot cylinders shall not be required to be supervised. 
4.5.5.7  Where manual bypasses are provided and such bypasses are capable of being 
left in an open position, these bypasses shall be supervised. 
4.5.6* Predischarge Alarms. 
4.5.6.1*  A pneumatic predischarge alarm and pneumatic time delay shall be provided 
for the following:                                                  
(1)  All total flooding systems protecting normally occupied and occupiable 
enclosures 
(2)  Local application systems protecting normally occupied and occupiable 
enclosures where the discharge will expose personnel to hazardous concentrations of 
carbon dioxide (See 4.5.4.5.3.)                                                
Exception:  For occupiable hazard areas where the provision of a time delay could 
result in unacceptable risk to personnel or unacceptable damage to critical pieces of 
equipment, time delays need not be provided. Provision shall be made to ensure that 
the carbon dioxide system is locked out at any time that personnel are present in the 
protected area or space. 
4.5.6.2  Predischarge alarms shall be provided to give positive warning of a discharge 
where hazards to personnel could exist. 



4.5.6.2.1  Such alarms shall function to warn personnel against entry into hazardous 
areas as long as such hazards exist or until such hazards are properly recognized. (See 
Section 4.4.) 
4.5.6.2.2  Audible predischarge alarms shall be at least 15 dB above ambient noise 
level or 5 dB above maximum sound level, whichever is greater, measured 5 ft (1.5 
m) above the floor of the occupiable area. 
4.5.6.2.3  Audible signal appliances shall have a sound level not more than 120 dB at 
the minimum hearing distance from the audible appliance. 
4.5.6.2.4  The predischarge alarm shall have a minimum decibel rating of 90 dBA at 
10 ft (3 m). 
4.5.6.3  An alarm or indicator shall be provided to show that the system has operated 
and needs recharging. 
4.5.6.4*  An alarm shall be provided to indicate the operation of automatic systems 
and that immediate personnel response is desired. 
4.5.6.5  Alarms indicating failure of supervised devices or equipment shall give 
prompt and positive indication of any failure and shall be distinctive from alarms 
indicating operation or hazardous conditions. 
4.5.7 Power Sources. 
4.5.7.1  The primary source of energy for the operation and control of the system shall 
have the capacity for intended service and shall be reliable. 
4.5.7.1.1  Where failure of the primary source of energy will jeopardize protection 
provided for the hazard, the life safety, or both, an independent secondary (standby) 
power supply shall supply energy to the system in the event of total failure or low 
voltage (less than 85 percent of the nameplate voltages) of the primary (main) power 
supply. 
4.5.7.1.2  The secondary (standby) supply shall be capable of operating the system 
under maximum normal load for 24 hours and then be capable of operating the system 
continuously for the full design discharge period. 
4.5.7.1.3  The secondary (standby) power supply shall automatically transfer to 
operate the system within 30 seconds of the loss of the primary (main) power supply. 
4.5.7.2  All electrical devices shall be operable between 85 percent and 105 percent of 
rated voltage. 
4.6 Carbon Dioxide Supply. 
4.6.1* Quantities. The amount of the main supply of carbon dioxide in the system 
shall be at least sufficient for the largest single hazard protected or group of hazards 
that are to be protected simultaneously. 
4.6.1.1  Where hand hose lines are provided for use on a hazard protected by a fixed 
system, separate supplies shall be provided unless sufficient carbon dioxide is 
provided to ensure that the fixed protection for the largest single hazard on which the 
hose lines can be used will not be jeopardized. (See Section 7.4 and A.7.1.1.) 
4.6.1.2  Where the authority having jurisdiction determines that continuous protection 
is required, the quantity of reserve supply shall be as many multiples of the quantities 
required in 4.6.1 and 4.6.1.1 as the authority having jurisdiction considers necessary. 
4.6.1.3  Both main and reserve supplies for fixed storage systems shall be 
permanently connected to the piping and arranged for easy changeover, except where 
the authority having jurisdiction permits an unconnected reserve. 
4.6.2 Replenishment. The time needed to obtain carbon dioxide for replenishment to 
restore systems to operating condition shall be considered as a major factor in 
determining the reserve supply needed. 
4.6.3* Quality. Carbon dioxide shall have the following minimum properties:                                             



(1)  The vapor phase shall be not less than 99.5 percent carbon dioxide with no 
detectable off-taste or odor. 
(2)  The water content of the liquid phase shall comply with CGA G6.2, 
Commodity Specification for Carbon Dioxide. 
(3)  Oil content shall be not more than 10 ppm by weight.                                                
4.6.4 Storage Containers. 
4.6.4.1  Storage containers and accessories shall be so located and arranged to 
facilitate inspection, maintenance, and recharging. 
4.6.4.2  Interruption to protection shall be held to a minimum. 
4.6.4.3  Storage containers shall be located as near as possible to the hazard or hazards 
they protect, but they shall not be located where they will be exposed to a fire or 
explosion in these hazards. 
4.6.4.4  Storage containers shall not be located where they will be subject to severe 
weather conditions or to mechanical, chemical, or other damage. 
4.6.4.5  Where excessive climatic or mechanical exposures are expected, guards or 
enclosures shall be provided. 
4.6.5* High-Pressure Cylinders. The carbon dioxide supply shall be stored in 
rechargeable cylinders designed to hold carbon dioxide in liquid form at ambient 
temperatures. 
4.6.5.1*  High-pressure cylinders used in fire-extinguishing systems shall not be 
recharged without a hydrostatic test (and remarking) if more than 5 years have 
elapsed from the date of the last test. 
4.6.5.1.1  Cylinders continuously in service without discharging shall be permitted to 
be retained in service for a maximum of 12 years from the date of the last hydrostatic 
test. 
4.6.5.1.2  At the end of 12 years, they shall be discharged and retested before being 
returned to service. 
4.6.5.2 Pressure Relief Device. 
4.6.5.2.1  Each cylinder shall be provided with a pressure relief device of the rupture 
disk type. 
4.6.5.2.2  The pressure relief device shall be sized and fitted in accordance with the 
requirements specified in Department of Transportation (DOT) regulations 49 CFR 
171–190. 
4.6.5.3 Manifolded Cylinders. 
4.6.5.3.1  When manifolded, cylinders shall be mounted and supported in a rack 
provided for the purpose, including facilities for convenient individual servicing and 
content weighing. 
4.6.5.3.2  Automatic means shall be provided to prevent the loss of carbon dioxide 
from the manifold if the system is operated when any cylinder is removed for 
maintenance. 
4.6.5.4 Cylinder Sizes. 
4.6.5.4.1  Individual cylinders shall be used having a standard weight capacity of 5, 
10, 15, 20, 25, 35, 50, 75, 100, or 120 lb (2.3, 4.5, 6.8, 9.1, 11.4, 15.9, 22.7, 34.1, 
45.4, or 54.4 kg) of carbon dioxide contents except for special temperature charges. 
(See 4.6.5.5.) 
4.6.5.4.2  In a multiple cylinder system, all cylinders supplying the same manifold 
outlet for distribution of agent shall be interchangeable and of one select size. 
4.6.5.5  The ambient storage temperatures for local application systems shall not 
exceed 120°F (49°C) nor be less than 32°F (0°C). 



4.6.5.5.1  For total flooding systems, the ambient storage temperatures shall not 
exceed 130°F (54°C) nor be less than 0°F (-18°C) unless the system is designed for 
operation with storage temperatures outside of this range. 
4.6.5.5.2  External heating or cooling shall be permitted to be used to keep the 
temperature within the range given in 4.6.5.5.1. 
4.6.5.5.3  Where special cylinder charges are used to compensate for storage 
temperatures outside the ranges stated in 4.6.5.5 and 4.6.5.5.1, the cylinders shall be 
marked in a permanent manner. 
4.6.6* Low-Pressure Storage Containers. Low-pressure storage containers shall be 
designed to maintain the carbon dioxide supply at a nominal pressure of 300 psi (2068 
kPa) corresponding to a temperature of approximately 0°F (-18°C). 
4.6.6.1 Container Requirements. 
4.6.6.1.1  The pressure container shall be made, tested, approved, equipped, and 
marked in accordance with the current specifications of API-ASME Code for Unfired 
Pressure Vessels for Petroleum Liquids and Gases, or, in the case of mobile supply 
containers, if applicable, the requirements of DOT 49 CFR 171–190, or both. 
4.6.6.1.2  The design pressure shall be at least 325 psi (2241 kPa). 
4.6.6.2*  In addition to the ASME and DOT code requirements referenced in 
4.6.6.1.1, each pressure container shall be equipped with a liquid level gauge, a 
pressure gauge, and a high/low-pressure supervisory alarm set to alarm at no more 
than 90 percent of the pressure vessel's design maximum allowable working pressure 
(MAWP) and no less than 250 psi (1724 kPa). 
4.6.6.3  The pressure container shall be insulated and equipped with automatically 
controlled refrigeration or heating, or both if necessary. 
4.6.6.4  The refrigeration system shall be capable of maintaining 300 psi (2068 kPa) 
in the pressure container under the highest expected ambient temperature. 
4.6.6.5 Heating. 
4.6.6.5.1  The heating system, where required, shall be capable of maintaining 0°F (-
18°C) in the pressure container under the lowest expected ambient temperature. 
4.6.6.5.2  Heating shall not be required to be provided unless known meteorological 
data indicate the likely occurrence of ambient temperatures that will cool the contents 
of the tank to reduce the pressure below 250 psi (1724 kPa) [approximately -10°F (-
23°C)]. 
4.7 Distribution Systems. 
4.7.1*  Piping shall be of metallic noncombustible material having physical and 
chemical characteristics such that its deterioration under stress can be predicted with 
reliability. 
4.7.1.1  Where piping is installed in severely corrosive atmospheres, special 
corrosion-resistant materials or coatings shall be used. 
4.7.1.2  Materials for piping and the standards covering these materials shall be as 
described in 4.7.1.2.1 through 4.7.1.2.5. 
4.7.1.2.1  Black or galvanized steel pipe shall be either ASTM A 53 seamless or 
electric welded, Grade A or B; or ASTM A 106, Grade A, B, or C. 
4.7.1.2.1.1  ASTM A 120 and ordinary cast-iron pipe shall not be used. 
4.7.1.2.1.2  Stainless steel shall be TP304 or TP316 for threaded connections or 
TP304, TP316, TP304L, or TP316L for welded connections. 
4.7.1.2.2  In systems using high-pressure supply, ¾ in. and smaller pipe shall be 
permitted to be Schedule 40. 
4.7.1.2.2.1  Pipe that is 1 in. through 4 in. shall be a minimum of Schedule 80. 
4.7.1.2.2.2  Furnace butt-weld ASTM A 53 pipe shall not be used. 



4.7.1.2.3  In systems using low-pressure supply, pipe shall be a minimum of Schedule 
40. 
4.7.1.2.3.1  Furnace butt-weld ASTM A 53 pipe shall be permitted to be used. 
4.7.1.2.4  A dirt trap consisting of a tee with a capped nipple, at least 2 in. (51 mm) 
long, shall be installed at the end of each pipe run. 
4.7.1.2.5  Piping sections not normally opened to atmosphere shall not be required to 
have corrosion-resistant finish on the inside. 
4.7.1.3*  Flexible piping system components not specifically covered in this standard 
shall have a minimum burst pressure of 5000 psi (34,474 kPa) for high-pressure 
systems or 1800 psi (12,411 kPa) for low-pressure systems. 
4.7.1.4  Class 150 and cast-iron fittings shall not be used. 
4.7.1.5  Fittings for high- and low-pressure systems shall be as described in 4.7.1.5.1 
and 4.7.1.5.2. 
4.7.1.5.1 High-Pressure Systems. 
4.7.1.5.1.1  Class 300 malleable or ductile iron fittings shall be used through 2 in. 
internal pipe size (IPS) and forged steel fittings in all larger sizes. 
4.7.1.5.1.2  Flanged joints upstream of any stop valves shall be Class 600. 
4.7.1.5.1.3  Flanged joints downstream of stop valves or in systems with no stop 
valves shall be permitted to be Class 300. 
4.7.1.5.1.4  Stainless steel fittings shall be Type 304 or 316, wrought or forged in 
accordance with ASTM A 182, Standard Specification for Forged or Rolled Alloy-
Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature 
Service, Class 3000, threaded or socket weld, for all sizes,  in. through 4 in. 
4.7.1.5.2 Low-Pressure Systems. 
4.7.1.5.2.1  Class 300 malleable or ductile iron fittings shall be used through 3 in. IPS 
and 1000 lb ductile iron or forged steel fittings in all larger sizes. 
4.7.1.5.2.2  Flanged joints shall be Class 300. 
4.7.1.5.2.3  Stainless steel fittings shall be Type 304 or 316 for threaded connections 
or Type 304, 316, 304L, or 316L for welded connections, wrought or forged in 
accordance with ASTM A 182, Standard Specification for Forged or Rolled Alloy-
Steel Pipe Flanges, Forged Fittings, and Valves and Parts for High-Temperature 
Service, Class 2000, threaded or socket weld, for all sizes,  in. through 4 in. 
4.7.1.6  Welded joints and screwed or flanged fittings (malleable iron or ductile iron) 
shall be permitted to be used. 
4.7.1.6.1  Mechanical grooved couplings and fittings shall be permitted to be used if 
they are specifically listed for carbon dioxide service. 
4.7.1.6.2  Flush bushings shall not be used. 
4.7.1.6.3  Where hex bushings are used for one pipe size reduction, a 3000 lb steel 
bushing shall be provided to maintain adequate strength. 
4.7.1.6.4  Where hex bushings are used for more than one pipe size reduction, 4.7.1.5 
shall be followed. 
4.7.1.6.5  Flared, compression-type, or brazed fittings shall be used with compatible 
tubing. 
4.7.1.6.6  Where brazed joints are used, the brazing alloy shall have a melting point of 
1000°F (538°C) or higher. 
4.7.1.7 High-Pressure Supply. 
4.7.1.7.1*  In systems using high-pressure supply with pipe other than that specified 
in Sections 4.7 and 4.8, the thickness of the pipe shall be calculated in accordance 
with ASME B31.1, Power Piping Code. 
4.7.1.7.2  The internal pressure for this calculation shall be 2800 psi (19,306 kPa). 



4.7.1.8 Low-Pressure Supply. 
4.7.1.8.1*  In systems using low-pressure supply with pipe other than that specified in 
4.7.1, the thickness of the pipe shall be calculated in accordance with ASME B31.1, 
Power Piping Code. 
4.7.1.8.2  The internal pressure for this calculation shall be 450 psi (3103 kPa). 
4.7.2*  The piping system shall be securely supported with due allowance for agent 
thrust forces and thermal expansion and contraction and shall not be subject to 
mechanical, chemical, or other damage. 
4.7.2.1  Where explosions are possible, the piping system shall be hung from supports 
that are least likely to be displaced. 
4.7.2.2  Pipe shall be reamed and cleaned before assembly, and after assembly the 
entire piping system shall be blown out before nozzles or discharge devices are 
installed. 
4.7.2.3  In systems where valve arrangement introduces sections of closed piping, 
such sections shall be equipped with pressure relief devices, or the valves shall be 
designed to prevent entrapment of liquid carbon dioxide. 
4.7.2.3.1  The pressure relief devices shall operate at between 2400 psi and 3000 psi 
(16,547 kPa and 20,684 kPa) on systems supplied with high-pressure storage and at 
450 psi (3103 kPa) on systems supplied by low-pressure storage. 
4.7.2.3.2  Where pressure-operated cylinder valves are used, a means shall be 
provided to vent any cylinder gas leakage from the manifold, but the means shall also 
prevent loss of gas when the system operates. 
4.7.2.4  All pressure relief devices shall be of such design and so located that the 
discharge of carbon dioxide therefrom will not injure personnel. 
4.7.3 Valves. 
4.7.3.1  All valves shall be suitable for the intended use, particularly regarding flow 
capacity and operation. 
4.7.3.2  All valves shall be used only under temperatures and other conditions for 
which they are listed or approved. 
4.7.3.3  Valves used in systems with high-pressure storage and constantly under 
pressure shall have a minimum bursting pressure of 6000 psi (41,369 kPa), whereas 
those not under constant pressure shall have a minimum bursting pressure of at least 
5000 psi (34,474 kPa). 
4.7.3.4  Valves used in systems using low-pressure storage shall withstand a 
hydrostatic test to 1800 psi (12,411 kPa) without permanent distortion. 
4.7.3.5  Valves shall be located, installed, or suitably protected so that they are not 
subject to mechanical, chemical, or other damage that would render them inoperative. 
4.7.3.6  Valves shall be rated for equivalent length in terms of the pipe or tubing sizes 
with which they will be used. 
4.7.3.7  The equivalent length of cylinder valves shall include siphon tube, valve, 
discharge head, and flexible connector. 
4.7.4* Discharge Nozzles. Discharge nozzles shall be for the use intended and shall be 
listed or approved for discharge characteristics. 
4.7.4.1  Discharge nozzles shall be of proper strength for use with the expected 
working pressures, shall be able to resist nominal mechanical abuse, and shall be 
constructed to withstand expected temperatures without deformation. 
4.7.4.2  Discharge orifices shall be of corrosion-resistant metal. 
4.7.4.3  Discharge nozzles used in local application systems shall be connected and 
supported so that they cannot readily be put out of adjustment. 



4.7.4.4*  Discharge nozzles shall be permanently marked to identify the nozzle and to 
show the equivalent single-orifice diameter regardless of shape and number of 
orifices. 
4.7.4.4.1  This equivalent diameter shall refer to the orifice diameter of the standard 
single-orifice-type nozzle having the same flow rate as the nozzle in question. 
4.7.4.4.2  The marking shall be readily discernible after installation. 
4.7.4.4.3*  The standard orifice shall be an orifice having a rounded entry with a 
coefficient of discharge not less than 0.98 and the flow characteristics as given in 
Table 4.7.5.2.1 and Table 4.7.5.3.1. 
4.7.4.4.4  Orifice sizes other than those shown in Table A.4.7.4.4.3 shall be permitted 
to be used and shall be permitted to be marked as decimal orifice equipment. 
4.7.4.5 Discharge Devices. 
4.7.4.5.1  Discharge nozzles shall be provided with frangible disks or blowout caps 
where clogging by foreign materials is likely. 
4.7.4.5.2  These devices shall provide an unobstructed opening upon system 
operation. 
4.7.5 Pipe and Orifice Size Determination. Pipe sizes and orifice areas shall be 
selected on the basis of calculations to deliver the required rate of flow at each nozzle. 
4.7.5.1*  The following equation or curves developed therefrom shall be used to 
determine the pressure drop in the pipeline: 
 
where: 
Q = flow rate [lb/min (kg/min)] 
D = actual inside pipe diameter [in. (mm)] 
L = equivalent length of pipeline [ft (m)] 
Y  and Z = factors depending on storage and line pressure 
4.7.5.2  For systems with low-pressure storage, flow shall be calculated on the basis 
of an average storage pressure of 300 psi (2068 kPa) during discharge. 
4.7.5.2.1  The discharge rate for equivalent orifices shall be based on the values given 
in Table 4.7.5.2.1. 
 
Table 4.7.5.2.1  Discharge Rate per Square Inch of Equivalent Orifice Area for Low-
Pressure Storage [300 psi (2068 kPa)]  
Orifice Pressure  Discharge Rate  
psi kPa  lb/minin.2 kg/minmm2  
300 2068  4220 2.970  
290 1999  2900 2.041  
280 1931  2375 1.671  
270 1862  2050 1.443  
260 1793  1825 1.284  
250 1724  1655 1.165  
240 1655  1525 1.073  
230 1586  1410 0.992  
220 1517  1305 0.918  
210 1448  1210 0.851  
200 1379  1125 0.792  
190 1310  1048 0.737  
180 1241  977 0.688  
170 1172  912 0.642  
160 1103  852 0.600  



150 1034  795 0.559  
 
4.7.5.2.2  Design nozzle pressures shall not be less than 150 psi (1034 kPa). 
4.7.5.3  For systems with high-pressure storage, flow shall be calculated on the basis 
of an average storage pressure of 750 psi (5171 kPa) during discharge for normal 
70°F (21°C) storage. 
4.7.5.3.1  The discharge rate through equivalent orifices shall be based on the values 
given in Table 4.7.5.3.1. 
 
Table 4.7.5.3.1  Discharge Rate per Square Inch of Equivalent Orifice Area for High-
Pressure Storage [750 psi (5171 kPa)]  
Orifice Pressure  Discharge Rate  
psi kPa  lb/minin.2 kg/minmm2  
750 5171  4630 3.258  
725 4999  3845 2.706  
700 4826  3415 2.403  
675 4654  3090 2.174  
650 4481  2835 1.995  
625 4309  2615 1.840  
600 4137  2425 1.706  
575 3964  2260 1.590  
550 3792  2115 1.488  
525 3620  1985 1.397  
500 3447  1860 1.309  
475 3275  1740 1.224  
450 3103  1620 1.140  
425 2930  1510 1.063  
400 2758  1400 0.985  
375 2586  1290 0.908  
350 2413  1180 0.830  
325 2241  1080 0.760  
300 2068  980 0.690  
 
4.7.5.3.2  Design nozzle pressure at 70°F (21°C) storage shall be greater than or equal 
to 300 psi (2068 kPa). 
4.8 Inspection, Maintenance, and Instruction. 
4.8.1* Inspection. At least every 30 days, an inspection shall be conducted to assess 
the system's operational condition. 
4.8.2 Hose Testing. 
4.8.2.1  All system hose, including those used as flexible connectors, shall be tested at 
2500 psi (17,239 kPa) for high-pressure systems and at 900 psi (6205 kPa) for low-
pressure systems. 
4.8.2.2  Hose shall be tested as follows:                                                  
(1)  The hose shall be removed from any attachment. 
(2)  Hose for hand lines shall be checked for electrical continuity between 
couplings. 
(3)  The hose assembly shall then be placed in a protective enclosure designed to 
permit visual observation of the test. 
(4)  The hose shall be completely filled with water before testing. 



(5)  Pressure shall then be applied at a rate-of-pressure rise to reach the test 
pressure within 1 minute. 
(6)  The test pressure shall be maintained for 1 full minute. 
(7)  Observations shall then be made to note any distortion or leakage. 
(8)  If the test pressure has not dropped and if the couplings have not moved, the 
pressure shall be released. 
(9)  The hose assembly shall be considered to have passed the hydrostatic test if no 
permanent distortion has taken place. 
(10)  Hose assembly passing the test shall be completely dried internally. 
(11)  If heat is used for drying, the temperature shall not exceed 150°F (66°C). 
(12)  Hose assemblies failing this test shall be marked, destroyed, and replaced with 
new assemblies. 
(13)  Hose assemblies passing this test shall be marked with the date of the test on 
the hose.                                                
4.8.2.3  All system hose, including those used as flexible connectors, shall be tested 
every 5 years in accordance with 4.8.2. 
4.8.3* Maintenance. 
4.8.3.1 Test and Maintenance Procedures. 
4.8.3.1.1  A manufacturer's test and maintenance procedure shall be provided to the 
owner for testing and maintenance of the system. 
4.8.3.1.2  This procedure shall provide for the initial testing of the equipment as well 
as for periodic test inspection and maintenance of the system. 
4.8.3.2  The following shall be verified by competent personnel at least annually using 
available documentation required in 4.4.2.14:                                                  
(1)  Check and test the carbon dioxide system for operation. 
(2)  Check that there have been no changes to the size, type, and configuration of 
the hazard and system. 
(3)  Check and test all time delay for operation. 
(4)  Check and test all audible alarm for operation. 
(5)  Check and test all visual signal for operation. 
(6)  Check that all warning signs are installed in accordance with 4.3.2. 
(7)  Check to ensure that the procedures in 4.3.3.1.1 are appropriate and the 
devices in 4.3.3.1.1 are operable.                                                
4.8.3.2.1  The goal of this maintenance and testing shall be not only to ensure that the 
system is in full operating condition, but shall also indicate the probable continuance 
of that condition until the next inspection. 
4.8.3.2.2  Discharge tests shall be made when any maintenance indicates their 
advisability. 
4.8.3.2.3  Prior to testing, safety procedures shall be reviewed. (See Section 4.3 and 
A.4.3.) 
4.8.3.3  A maintenance report with recommendations shall be filed with the owner. 
4.8.3.4 High-Pressure Cylinder Weights. 
4.8.3.4.1  At least semiannually, all high-pressure cylinders shall be weighed and the 
date of the last hydrostatic test noted. (See 4.6.5.1.) 
4.8.3.4.2  If, at any time, a container shows a loss in net content of more than 10 
percent, it shall be refilled or replaced. 
4.8.3.5 Low-Pressure Container Liquid Levels. 
4.8.3.5.1  At least weekly, the liquid level gauges of low-pressure containers shall be 
observed. 



4.8.3.5.2  If at any time a container shows a loss of more than 10 percent, it shall be 
refilled, unless the minimum gas requirements are still provided. 
4.8.3.6*  Testing of heat, smoke, and flame detectors shall be in accordance with 
NFPA 72, National Fire Alarm Code. 
4.8.3.7  Systems shall be kept in full operating condition at all times. 
4.8.3.7.1  Use, impairment, and restoration of systems shall be reported promptly to 
the authority having jurisdiction. 
4.8.3.7.2  Any troubles or impairments shall be corrected at once by competent 
personnel. 
4.8.4* Instruction. Persons who inspect, test, maintain, or operate carbon dioxide fire-
extinguishing systems shall be thoroughly trained in the functions they perform. 
Chapter 5 Total Flooding Systems 
5.1 General Information. 
See also Annex D. 
5.1.1 Description. A total flooding system shall consist of a fixed supply of carbon 
dioxide permanently connected to fixed piping, with fixed nozzles arranged to 
discharge carbon dioxide into an enclosed space or enclosure about the hazard. 
5.1.2* Uses. A total flooding system shall be used where there is a permanent 
enclosure around the hazard that enables the required concentration of carbon dioxide 
to be built up and to be maintained for the required period of time. 
5.1.3 General Requirements. Total flooding systems shall be designed, installed, 
tested, and maintained in accordance with the applicable requirements in Chapter 4 
and with the additional requirements set forth in this chapter. 
5.1.4 Safety Requirements. See Section 4.3 and 4.5.6. 
5.2 Hazard Specifications. 
5.2.1* Enclosure. 
5.2.1.1*  For flash- or surface-type fires, such as will be present with flammable 
liquids, any unclosable openings shall be compensated for by additional carbon 
dioxide as specified in 5.3.5.1. 
5.2.1.2  If the quantity of carbon dioxide required for compensation exceeds the basic 
quantities required for flooding without leakage, the system shall be permitted to be 
designed for local application in accordance with Chapter 6. 
5.2.1.3*  For deep-seated fires, such as will be involved with solids, unclosable 
openings shall be restricted to those bordering or actually in the ceiling, if the size of 
the openings exceeds the pressure relief venting requirements set forth in 5.6.2. 
5.2.1.4  To prevent fire from spreading through openings to adjacent hazards or work 
areas that can be possible re-ignition sources, such openings shall be provided with 
automatic closures or local application nozzles. 
5.2.1.4.1  The gas required for such protection shall be in addition to the normal 
requirement for total flooding. (See 6.4.3.6.) 
5.2.1.4.2  Where neither method in 5.2.1.4 or 5.2.1.4.1 is practical, protection shall be 
extended to include these adjacent hazards or work areas. 
5.2.1.5  In the case of process and storage tanks where safe venting of flammable 
vapors and gases cannot be realized, the use of external local application systems 
outlined in 6.4.3.6 shall be required. 
5.2.2 Leakage and Ventilation. Because the efficiency of carbon dioxide systems 
depends on the maintenance of an extinguishing concentration of carbon dioxide, 
leakage of gas from the space shall be kept to a minimum and compensated for by 
applying extra gas. 



5.2.2.1  Where possible, openings such as doorways, windows, and so forth, shall be 
arranged to close automatically before or simultaneously with the start of the carbon 
dioxide discharge, or 5.3.5.1 and 5.4.4.1 shall be followed. (For personnel safety, see 
Section 4.3.) 
5.2.2.2  Where forced-air ventilating systems are involved, they preferably shall be 
shut down or closed, or both, before or simultaneously with the start of the carbon 
dioxide discharge, or additional compensating gas shall be provided. (See 5.3.5.2.) 
5.2.3* Types of Fires. Fires that can be extinguished by total flooding methods shall 
be divided into the following two categories:                                                  
(1)  Surface fires involving flammable liquids, gases, and solids 
(2)  Deep-seated fires involving solids subject to smoldering                                                
5.2.3.1*  Surface fires are subject to prompt extinguishment when carbon dioxide is 
quickly introduced into the enclosure in a quantity to overcome leakage and provide 
an extinguishing concentration for the particular materials involved. 
5.2.3.2*  For deep-seated fires, the required extinguishing concentration shall be 
maintained for a period of time to allow the smoldering to be extinguished and the 
material to cool to a point at which re-ignition will not occur when the inert 
atmosphere is dissipated. 
5.3 Carbon Dioxide Requirements for Surface Fires. 
5.3.1 General. 
5.3.1.1  The quantity of carbon dioxide for surface-type fires shall be based on 
average conditions assuming fairly prompt extinguishment. 
5.3.1.2  Although a reasonable allowance for normal leakage is included in the basic 
volume factors, corrections shall be made for the type of material involved and any 
other special conditions. 
5.3.2 Flammable Materials. 
5.3.2.1  Consideration shall be given to the determination of the design concentration 
of carbon dioxide required for the type of flammable material involved in the hazard. 
5.3.2.1.1  The design concentration shall be determined by adding a factor (20 
percent) to the minimum effective concentration. 
5.3.2.1.2  In no case shall a concentration less than 34 percent be used. 
5.3.2.2*  Table 5.3.2.2 shall be used to determine the minimum carbon dioxide 
concentrations for the liquids and gases shown in the table. 
 
Table 5.3.2.2  Minimum Carbon Dioxide Concentrations for Extinguishment  
Material Theoretical Minimum CO2 Concentration  
(%) Minimum Design CO2 Concentration (%)  
Acetylene 55 66  
Acetone 27* 34  
Aviation gas grades 
   115/145 30 36  
Benzol, benzene 31 37  
Butadiene 34 41  
Butane 28 34  
Butane-I 31 37  
Carbon disulfide 60 72  
Carbon monoxide 53 64  
Coal or natural gas 31* 37  
Cyclopropane 31 37  
Diethyl ether 33 40  



Dimethyl ether 33 40  
Dowtherm 38* 46  
Ethane 33 40  
Ethyl alcohol 36 43  
Ethyl ether 38* 46  
Ethylene 41 49  
Ethylene dichloride 21 34  
Ethylene oxide 44 53  
Gasoline 28 34  
Hexane 29 35  
Higher paraffin 
  hydrocarbons Cn H2m 
  + 2m -5 28 34  
Hydrogen 62 75  
Hydrogen sulfide 30 36  
Isobutane 30* 36  
Isobutylene 26 34  
Isobutyl formate 26 34  
JP-4 30 36  
Kerosene 28 34  
Methane 25 34  
Methyl acetate 29 35  
Methyl alcohol 33 40  
Methyl butene-I 30 36  
Methyl ethyl ketone 33 40  
Methyl formate 32 39  
Pentane 29 35  
Propane 30 36  
Propylene 30 36  
Quench, lube oils 28 34  
Note: The theoretical minimum extinguishing concentrations in air for the materials in 
the table were obtained from a compilation of Bureau of Mines, Bulletins 503 and 
627, Limits of Flammability of Gases and Vapors. 
*Calculated from accepted residual oxygen values.  
 
5.3.2.3  For materials not given in Table 5.3.2.2, the minimum theoretical carbon 
dioxide concentration shall be obtained from some recognized source or determined 
by test. 
5.3.2.4  If maximum residual oxygen values are available, the theoretical carbon 
dioxide concentration shall be calculated by using the following formula: 
 
5.3.3 Volume Factor. The volume factor used to determine the basic quantity of 
carbon dioxide to protect an enclosure containing a material requiring a design 
concentration of 34 percent shall be in accordance with Table 5.3.3(a) and Table 
5.3.3(b). 
 
Table 5.3.3(a)  Flooding Factors  
 (B) 
Volume Factor   
(A) 



Volume of Space (ft3) ft3/lb CO2 lb CO2/ft3 (C) 
Calculated Quantity (lb) (Not Less Than)  
Up to 140 14 0.072 —  
141–500 15 0.067 10  
501–1600 16 0.063 35  
1601–4500 18 0.056 100  
4501–50,000 20 0.050 250  
Over 50,000 22 0.046 2500  
 
 
Table 5.3.3(b)  Flooding Factors (SI Units)  
 (B) 
Volume Factor   
(A) 
Volume of Space (m3) m3/kg CO2 kg CO2/m3 (C) 
Calculated Quantity (kg) (Not Less Than)  
Up to 3.96 0.86 1.15 —  
3.97–14.15 0.93 1.07 4.5  
14.16–45.28 0.99 1.01 15.1  
45.29–127.35 1.11 0.90 45.4  
127.36–1415.0 1.25 0.80 113.5  
Over 1415.0 1.38 0.77 1135.0  
 
5.3.3.1*  In figuring the net cubic capacity to be protected, due allowance shall be 
permitted to be made for permanent nonremovable impermeable structures materially 
reducing the volume. 
5.3.3.2 Interconnected Volumes. 
5.3.3.2.1  In two or more interconnected volumes where free flow of carbon dioxide 
can take place, the carbon dioxide quantity shall be the sum of the quantities 
calculated for each volume, using its respective volume factor from Table 5.3.3(a) or 
Table 5.3.3(b). 
5.3.3.2.2  If one volume requires greater than normal concentration (see 5.3.4), the 
higher concentration shall be used in all interconnected volumes. 
5.3.4 Material Conversion Factor. For materials requiring a design concentration over 
34 percent, the basic quantity of carbon dioxide calculated from the volume factor 
given in Table 5.3.3(a) and Table 5.3.3(b) shall be increased by multiplying this 
quantity by the appropriate conversion factor given in Figure 5.3.4. 
 
FIGURE 5.3.4  Material Conversion Factors. 
5.3.5 Special Conditions. Additional quantities of carbon dioxide shall be provided to 
compensate for any special condition that can adversely affect the extinguishing 
efficiency. 
5.3.5.1* Openings That Cannot Be Closed. 
5.3.5.1.1  Any openings that cannot be closed at the time of extinguishment shall be 
compensated for by the addition of a quantity of carbon dioxide equal to the 
anticipated loss at the design concentration during a 1-minute period. 
5.3.5.1.2  This amount of carbon dioxide shall be applied through the regular 
distribution system. (See 5.2.1.1 and A.5.5.2.) 
5.3.5.2 Ventilating Systems. 



5.3.5.2.1  For ventilating systems that cannot be shut down, additional carbon dioxide 
shall be added to the space through the regular distribution system in an amount 
computed by dividing the volume moved during the liquid discharge period by the 
flooding factor. 
5.3.5.2.2  This amount shall be multiplied by the material conversion factor 
(determined from Figure 5.3.4) when the design concentration is greater than 34 
percent. 
5.3.5.3*  For applications where the normal temperature of the enclosure is above 
200°F (93°C), a 1 percent increase in the calculated total quantity of carbon dioxide 
shall be provided for each additional 5°F (2.8°C) above 200°F (93°C). 
5.3.5.4  For applications where the normal temperature of the enclosure is below 0°F 
(-18°C), a 1 percent increase in the calculated total quantity of carbon dioxide shall be 
provided for each degree Fahrenheit below 0°F (-18°C). 
5.3.5.5*  Except for unusual conditions, it shall not be required to provide extra 
carbon dioxide to maintain the design concentration. 
5.3.5.6  If a hazard contains a liquid having an auto-ignition temperature below its 
boiling point, the carbon dioxide concentration shall be maintained for a period to 
allow the liquid temperature to cool below its auto-ignition temperature. (See 6.3.3.4.) 
5.3.5.7* Flooding Factor. 
5.3.5.7.1  A flooding factor of 8 ft3/lb (0.22 m3/kg) shall be used in ducts and covered 
trenches. 
5.3.5.7.2  If the combustibles represent a deep-seated fire, it shall be treated as 
described in Section 5.4. 
5.4 Carbon Dioxide Requirements for Deep-Seated Fires. 
5.4.1* General. 
5.4.1.1  After the design concentration is reached, the concentration shall be 
maintained for a substantial period of time, but not less than 20 minutes. 
5.4.1.2  Any possible leakage shall be given special consideration because no 
allowance is included in the basic flooding factors. 
5.4.2* Combustible Materials. 
5.4.2.1*  The design concentrations listed in Table 5.4.2.1 shall be achieved for the 
hazards listed. 
 
Table 5.4.2.1  Flooding Factors for Specific Hazards  
 Volume Factors   
Design Concentration (%) ft3/lb CO2 m3/kg CO2 lb CO2/ft3 kg 
CO2/m3 Specific Hazards  
50 10 0.62 0.100 1.60 Dry electrical hazards in general [spaces less 
than 2000 ft3 (56.6 m3)]  
50 12 0.75 0.083  
(200 lb minimum) 1.33  
(91 kg minimum) Dry electrical hazards in general [spaces greater than 2000 ft3 
(56.6 m3)]  
65 8 0.50 0.125 2.00 Record (bulk paper) storage, ducts, covered 
trenches  
75 6 0.38 0.166 2.66 Fur storage vaults, dust collectors  
 
5.4.2.2 Other Deep-Seated Fires. 
5.4.2.2.1  Flooding factors for other deep-seated fires shall be justified to the 
satisfaction of the authority having jurisdiction before use. 



5.4.2.2.2  Consideration shall be given to the mass of material to be protected because 
the thermal insulating effects reduce the rate of cooling. 
5.4.3 Volume Consideration. 
5.4.3.1  The volume of the space shall be determined in accordance with 5.3.3.1. 
5.4.3.2  The basic quantity of carbon dioxide required to protect an enclosure shall be 
obtained by treating the volume of the enclosure by the flooding factor given in 5.4.2. 
5.4.4 Special Conditions. Additional quantities of carbon dioxide shall be provided to 
compensate for any special condition that can adversely affect the extinguishing 
efficiency. (See 5.3.5.2, 5.3.5.3, and 5.3.5.4.) 
5.4.4.1  Any openings that cannot be closed at the time of extinguishment shall be 
compensated for by the addition of carbon dioxide equal in volume to the expected 
leakage volume during the extinguishing period. 
5.4.4.2  If leakage is appreciable, consideration shall be given to an extended 
discharge system as covered in 5.5.3. (See also 5.2.1.3.) 
5.5 Distribution System. 
5.5.1 General. The distribution system for applying carbon dioxide to enclosed 
hazards shall be designed with due consideration for the materials involved and the 
nature of the enclosure, because these items can require various discharge times and 
rates of application. 
5.5.2* Rate of Application. The minimum design rate of application shall be based on 
the quantity of carbon dioxide and the maximum time to achieve design 
concentration. 
5.5.2.1*  For surface fires, the design concentration shall be achieved within 1 minute 
from start of discharge. 
5.5.2.2  For high-pressure systems, if a part of the hazard is to be protected by total 
flooding, the discharge rate for the total flooding portion shall be computed as 
specified in 6.3.2.3. 
5.5.2.3  For deep-seated fires, the design concentration shall be achieved within 7 
minutes, but the rate shall be not less than that required to develop a concentration of 
30 percent in 2 minutes. 
5.5.3* Enclosed Rotating Electrical Equipment. For enclosed rotating electrical 
equipment, a minimum concentration of 30 percent shall be maintained for the 
deceleration period, but not less than 20 minutes. 
5.5.4 Piping Systems. 
5.5.4.1  Piping shall be designed in accordance with 4.7.5 to deliver the required rate 
of application at each nozzle. 
5.5.4.2*  High-pressure storage temperatures shall be permitted to range from 0°F (-
18°C) to 130°F (54°C) without requiring special methods of compensating for 
changing flow rates. (See 4.6.5.5.) 
5.5.5 Nozzle Sizing and Distribution. Nozzles used in connection with total flooding 
systems with either high- or low-pressure supply shall be of a type suitable for the 
intended purpose and shall be located to achieve the best results. 
5.5.5.1 Nozzle Selection. 
5.5.5.1.1  The types of nozzles selected and their placement shall be such that the 
discharge will not unduly splash flammable liquids or create dust clouds that could 
extend the fire, create an explosion, or otherwise adversely affect the contents of the 
enclosure. 
5.5.5.1.2  Nozzles vary in design and discharge characteristics and shall be selected 
on the basis of their adequacy for the use intended. 



5.5.5.2  Spacing and sizing of nozzles in ductwork is dependent on many factors such 
as velocity in duct, location and effectiveness of dampers, possible loading of duct 
walls with combustible deposits, duct length, and cross-sectional dimensions. 
5.5.5.2.1  The nozzle locations and sizing shall be selected to ensure distribution of 
the carbon dioxide throughout the entire length of the ductwork. 
5.5.5.2.2  Automatic dampers shall be provided to close on system operation. 
5.5.5.2.3  No allowance shall be required for inlet and outlet duct openings that have 
surface hazards only. (See 5.3.5.7 and Table 5.4.2.1.) 
5.6 Venting Consideration. 
5.6.1* General. The venting of flammable vapors and pressure buildup from the 
discharge of quantities of carbon dioxide into closed spaces shall be considered. (See 
5.2.1.5.) 
5.6.2* Pressure Relief Venting. For very tight enclosures, the necessary area of free 
venting shall be calculated from the following equation: 
 
where: 
X = free venting area (in.2) 
Q = calculated carbon dioxide flow rate (lb/min) 
P = allowable strength of enclosure (lb/ft2) 
5.6.2.1  Satisfactory results shall be achieved by assuming the expansion of carbon 
dioxide to be 9 ft3/lb (0.56 m3/kg). 
5.6.2.2  For SI units, the following equation shall apply: 
 
where: 
X = free venting area (mm2) 
Q = calculated carbon dioxide flow rate (kg/min) 
P = allowable strength of enclosure (kPa) 
Chapter 6 Local Application Systems 
6.1 General Information. 
See also Annex F. 
6.1.1 Description. A local application system shall consist of a fixed supply of carbon 
dioxide permanently connected to a system of fixed piping with nozzles arranged to 
discharge directly into the fire. 
6.1.2* Uses. Local application systems shall be used for the extinguishment of surface 
fires in flammable liquids, gases, and shallow solids where the hazard is not enclosed 
or where the enclosure does not conform to the requirements for total flooding. 
6.1.3 General Requirements. Local application systems shall be designed, installed, 
tested, and maintained in accordance with the applicable requirements in previous 
chapters and with the additional requirements set forth in this chapter. 
6.1.4* Safety Requirements. 
6.2 Hazard Specifications. 
6.2.1 Extent of Hazard. The hazard shall be so isolated from other hazards or 
combustibles that fire will not spread outside the protected area. 
6.2.1.1  The entire hazard shall be protected. 
6.2.1.2  The hazard shall include all areas that are, or can become, coated by 
combustible liquids or shallow solid coatings, such as areas subject to spillage, 
leakage, dripping, splashing, or condensation. 
6.2.1.3  The hazard shall also include all associated materials or equipment, such as 
freshly coated stock, drain boards, hoods, ducts, and so forth, that could extend fire 
outside or lead fire into the protected area. 



6.2.1.4  A series of interexposed hazards shall be permitted to be subdivided into 
smaller groups or sections with the approval of the authority having jurisdiction. 
6.2.1.5  Systems for such hazards shall be designed to give immediate independent 
protection to adjacent groups or sections as needed. 
6.2.2 Location of Hazard. 
6.2.2.1  The hazard shall be permitted to be indoors, partly sheltered, or completely 
out of doors. 
6.2.2.2  It is essential that the carbon dioxide discharge shall be such that winds or 
strong air currents do not impair the protection. 
6.3 Carbon Dioxide Requirements. 
6.3.1* General. The quantity of carbon dioxide required for local application systems 
shall be based on the total rate of discharge needed to blanket the area or volume 
protected and the time that the discharge must be maintained to ensure complete 
extinguishment. 
6.3.1.1* High-Pressure Storage. 
6.3.1.1.1  For systems with high-pressure storage, the computed quantity of carbon 
dioxide shall be increased by 40 percent to determine nominal cylinder storage 
capacity because only the liquid portion of the discharge is effective. 
6.3.1.1.2  This increase in cylinder storage capacity shall not be required for the total 
flooding portion of combined local application–total flooding systems. 
6.3.1.2*  The quantity of carbon dioxide in storage shall be increased by an amount to 
compensate for liquid vaporized in cooling the piping. 
6.3.2 Rate of Discharge. Nozzle discharge rates shall be determined by either the 
surface method, as covered in Section 6.4, or the volume method, as covered in 
Section 6.5. 
6.3.2.1  The total rate of discharge for the system shall be the sum of the individual 
rates of all the nozzles or discharge devices used on the system. 
6.3.2.2  For low-pressure systems, if a part of the hazard is to be protected by total 
flooding, the discharge rate for the total flooding part shall develop the required 
concentration in not more than the discharge time used for the local application part of 
the system. 
6.3.2.3  For high-pressure systems, if a part of the hazard is to be protected by total 
flooding, the discharge rate for the total flooding part shall be computed by dividing 
the quantity required for total flooding by the factor 1.4 and by the time of the local 
application discharge in minutes, as shown in the following equation: 
 
where: 
QF = rate of flow for the total flooding portion [lb/min (kg/min)] 
WF = total quantity of carbon dioxide for the total flooding portion [lb (kg)] 
TL = liquid discharge time for the local application portion (min) 
6.3.3* Duration of Discharge. 
6.3.3.1  The minimum effective discharge time for computing quantity shall be 30 
seconds. 
6.3.3.2  The minimum time shall be increased to compensate for any hazard condition 
that would require a longer cooling period to ensure complete extinguishment. 
6.3.3.3  Where there is a possibility that metal or other material can become heated 
above the ignition temperature of the fuel, the effective discharge time shall be 
increased to allow adequate cooling time. 



6.3.3.4*  Where the fuel has an auto-ignition point below its boiling point, such as 
paraffin wax and cooking oils, the effective discharge time shall be increased to 
permit cooling of the fuel to prevent re-ignition. 
6.3.3.4.1  The minimum liquid discharge time shall be 3 minutes. 
6.4 Rate-by-Area Method. 
6.4.1 General. The area method of system design shall be used where the fire hazard 
consists primarily of flat surfaces or low-level objects associated with horizontal 
surfaces. 
6.4.1.1  System design shall be based on listing or approval data for individual 
nozzles. 
6.4.1.2  Extrapolation of such data above or below the upper or lower limits shall not 
be permitted. 
6.4.2 Nozzle Discharge Rates. The design discharge rate through individual nozzles 
shall be determined on the basis of location or projection distance in accordance with 
specific approvals or listings. 
6.4.2.1*  The discharge rate for overhead-type nozzles shall be determined solely on 
the basis of distance from the surface each nozzle protects. 
6.4.2.2*  The discharge rate for tankside nozzles shall be determined solely on the 
basis of the throw or projection required to cover the surface each nozzle protects. 
6.4.3 Area per Nozzle. The maximum area protected by each nozzle shall be 
determined on the basis of location or projection distance and the design discharge 
rate in accordance with specific approvals or listings. 
6.4.3.1  The same factors used to determine the design discharge rate shall be used to 
determine the maximum area to be protected by each nozzle. 
6.4.3.2  The portion of the hazard protected by individual overhead-type nozzles shall 
be considered as a square area. 
6.4.3.3  The portion of the hazard protected by individual tankside or linear nozzles is 
either a rectangular or square area in accordance with spacing and discharge 
limitations stated in specific approvals or listings. 
6.4.3.4*  Where coated rollers or other similar irregular shapes are to be protected, the 
projected wetted area shall be used to determine nozzle coverage. 
6.4.3.5  Where coated surfaces are to be protected, the area per nozzle shall be 
permitted to be increased to a maximum of 40 percent over the areas given in specific 
approvals or listings. 
6.4.3.5.1  Coated surfaces shall be defined as those designed for drainage that are 
constructed and maintained so that no pools of liquid will accumulate over a total area 
exceeding 10 percent of the protected surface. 
6.4.3.5.2  Subsection 6.4.3.5 shall not apply where there is a heavy buildup of residue. 
(See 6.1.2.) 
6.4.3.6  Where local application nozzles are used for protection across openings as 
defined in 5.2.1.4 and 5.2.1.5, the area per nozzle given by specific approval or listing 
shall be permitted to be increased to a maximum of 20 percent. 
6.4.3.7  Where deep-layer flammable liquid fires are to be protected, a minimum 
freeboard of 6 in. (152 mm) shall be provided unless otherwise noted in approvals or 
listings of nozzles. 
6.4.4 Location and Number of Nozzles. A quantity of nozzles shall be used to cover 
the entire hazard area on the basis of the unit areas protected by each nozzle. 
6.4.4.1  Tankside or linear nozzles shall be located in accordance with spacing and 
discharge rate limitations stated in specific approvals or listings. 



6.4.4.2  Overhead-type nozzles shall be installed perpendicular to the hazard and 
centered over the area protected by the nozzle. 
6.4.4.2.1  Overhead-type nozzles shall also be permitted to be installed at angles 
between 45 degrees and 90 degrees from the plane of the hazard surface as prescribed 
in 6.4.4.3. 
6.4.4.2.2  The height used in determining the necessary flow rate and area coverage 
shall be the distance from the aiming point on the protected surface to the face of the 
nozzle measured along the axis of the nozzle. 
6.4.4.3 Nozzles Installed at an Angle. 
6.4.4.3.1  When nozzles are installed at an angle, they shall be aimed at a point 
measured from the near side of the area protected by the nozzle. 
6.4.4.3.2  This location shall be calculated by multiplying the fractional aiming factor 
in Table 6.4.4.3.2 by the width of the area protected by the nozzle. 
 
Table 6.4.4.3.2  Aiming Factors for Angular Placement of Nozzles, Based on 6 in. 
(152 mm) Freeboard  
Discharge Angle* Aiming Factors†  
45–60 ¼  
60–75 ¼–  
75–90 –½  
90 (perpendicular) ½ (center)  
*Degrees from plane of hazard surface. 
†Fractional amount of nozzle coverage area.  
 
6.4.4.4  Nozzles shall be located so as to be free of possible obstructions that could 
interfere with the projection of the discharged carbon dioxide. 
6.4.4.5*  Nozzles shall be located so as to develop an extinguishing atmosphere over 
coated stock extending above a protected surface. 
6.4.4.6  The possible effects of air currents, winds, and forced drafts shall be 
compensated for by nozzle locations or by providing additional nozzles to protect the 
outside areas of the hazard. 
6.5 Rate-by-Volume Method. 
6.5.1 General. The volume method of system design shall be used where the fire 
hazard consists of three-dimensional irregular objects that cannot be easily reduced to 
equivalent surface areas. 
6.5.2 Assumed Enclosure. The total discharge rate of the system shall be based on the 
volume of an assumed enclosure entirely surrounding the hazard. 
6.5.2.1  The assumed enclosure shall be based on an actual closed floor unless special 
provisions are made to take care of bottom conditions. 
6.5.2.2  The assumed walls and ceiling of this enclosure shall be at least 2 ft (0.6 m) 
from the main hazard unless actual walls are involved, and they shall enclose all areas 
of possible leakage, splashing, or spillage. 
6.5.2.3  No deductions shall be made for solid objects within this volume. 
6.5.2.4  A minimum dimension of 4 ft (1.2 m) shall be used in calculating the volume 
of the assumed enclosure. 
6.5.2.5  If the hazard can be subjected to winds or forced drafts, the assumed volume 
shall be increased to compensate for losses on the windward sides. 
6.5.3 System Discharge Rate. 
6.5.3.1  The total discharge rate for the basic system shall be equal to 1 lb/minft3 (16 
kg/minm3) of assumed volume. 



6.5.3.2*  If the assumed enclosure has a closed floor and is partly defined by 
permanent continuous walls extending at least 2 ft (0.6 m) above the hazard (where 
the walls are not normally a part of the hazard), the discharge rate shall be permitted 
to be proportionately reduced to not less than 0.25 lb/minft3 (4 kg/minm3) for actual 
walls completely surrounding the enclosure. 
6.5.4 Location and Number of Nozzles. A quantity of nozzles shall be used to cover 
the entire hazard volume on the basis of the system discharge rate as determined by 
the assumed volume. 
6.5.4.1  Nozzles shall be located and directed so as to retain the discharged carbon 
dioxide in the hazard volume by cooperation between nozzles and objects in the 
hazard volume. 
6.5.4.2  Nozzles shall be located so as to compensate for any possible effects of air 
currents, winds, or forced drafts. 
6.5.4.3  The design discharge rates through individual nozzles shall be determined on 
the basis of location or projection distance in accordance with specific approvals or 
listings for surface fires. 
6.6 Distribution System. 
6.6.1 General. The system shall be designed to provide an effective discharge of 
carbon dioxide promptly before excessive amounts of heat can be absorbed by 
materials within the hazard. 
6.6.1.1  The carbon dioxide supply shall be located as near to the hazard as practicable 
and yet not exposed to the fire, and the pipeline shall be as direct as practicable with a 
minimum number of turns in order to get carbon dioxide to the fire promptly. 
6.6.1.2  The system shall be designed for automatic operation except where the 
authorities having jurisdiction permit manual operation. 
6.6.2* Piping Systems. Piping shall be designed in accordance with 4.7.5 to deliver 
the required rate of application at each nozzle. 
6.6.3 Discharge Nozzles. The nozzles used shall be listed or approved for rate of 
discharge, effective range, and pattern or area coverage. 
6.6.3.1  The equivalent orifice size used in each nozzle shall be determined in 
accordance with 4.7.5 to match the design discharge rate. 
6.6.3.2  Nozzles shall be accurately located and directed in accordance with the 
system design requirements as covered in Sections 6.4 and 6.5. 
Chapter 7 Hand Hose Line Systems 
7.1 General Information. 
7.1.1* Description. Hand hose line systems shall consist of a hose reel or rack, hose, 
and discharge nozzle assembly connected by fixed piping to a supply of carbon 
dioxide. 
7.1.2 Uses. Hand hose line systems shall be permitted to be used to supplement fixed 
fire protection systems or to supplement first aid fire extinguishers for the protection 
of specific hazards for which carbon dioxide is the extinguishing agent. 
7.1.2.1  These systems shall not be used as a substitute for other fixed carbon dioxide 
fire-extinguishing systems equipped with fixed nozzles, except where the hazard 
cannot adequately or economically be provided with fixed protection. 
7.1.2.2  The decision as to whether hose lines are applicable to the particular hazard 
shall rest with the authority having jurisdiction. 
7.1.3 General Requirements. Hand hose line systems shall be installed and maintained 
in accordance with the applicable requirements of Chapters 4, 5, and 6, except as 
outlined in Sections 7.2 through 7.6. 
7.1.4* Safety Requirements. 



7.2 Hazard Specifications. 
Hand hose line systems shall be permitted to be used to combat fires in all hazards 
covered under Chapter 1, except those that are inaccessible and beyond the scope of 
manual fire fighting. 
7.3 Location and Spacing. 
7.3.1 Location. 
7.3.1.1  Hand hose line stations shall be placed such that they are easily accessible and 
within reach of the most distant hazard that they are expected to protect. 
7.3.1.2  In general, they shall not be located such that they are exposed to the hazard, 
nor shall they be located inside any hazard area protected by a total flooding system. 
7.3.2 Spacing. If multiple-hose stations are used, they shall be spaced so that any area 
within the hazard can be covered by one or more hose lines. 
7.4 Carbon Dioxide Requirements. 
7.4.1 Rate and Duration of Discharge. 
7.4.1.1  The rate and duration of discharge and consequently the amount of carbon 
dioxide shall be determined by the type and potential size of the hazard. 
7.4.1.2  A hand hose line shall have a quantity of carbon dioxide to permit its use for 
at least 1 minute. 
7.4.2 Provision for Use by Inexperienced Personnel. The possibility of these hose 
lines being used by inexperienced personnel shall be considered, and a provision shall 
be made so that there will be a supply of carbon dioxide to enable personnel to effect 
extinguishment of the hazards that they are likely to encounter. 
7.4.3 Simultaneous Use. 
7.4.3.1  Where simultaneous use of two or more hose lines is possible, a quantity of 
carbon dioxide shall be available to support the maximum number of nozzles that are 
likely to be used at any one time for at least 1 minute. 
7.4.3.2  All supply piping shall be sized for the simultaneous operation of the number 
of nozzles that are likely to be used. 
7.5 Equipment Specifications. 
7.5.1 Hose. Hose lines on systems with high-pressure supply shall have a minimum 
bursting pressure of 5000 psi (34,474 kPa), and hose lines of systems with low-
pressure supply shall have a minimum bursting pressure of 1800 psi (12,411 kPa). 
(See 4.8.2.) 
7.5.2* Discharge Nozzle Assembly. Hose lines shall be equipped with a discharge 
nozzle assembly that can be easily handled by one operator and that contains a quick-
opening shutoff valve to control the flow of carbon dioxide through the nozzle and a 
handle for directing the discharge. 
7.5.3 Hose Line Storage. 
7.5.3.1  The hose shall be coiled on a hose reel or rack such that it will be ready for 
immediate use without the necessity of coupling and such that it can be uncoiled with 
a minimum of delay. 
7.5.3.2  If installed outdoors, it shall be protected against the weather. 
7.5.4* Charging the Hose Line. 
7.5.4.1  All controls for actuating the system shall be located in the immediate vicinity 
of the hose reel. 
7.5.4.2*  The carbon dioxide supply shall be located as close to the hose reel as 
possible so that liquid carbon dioxide will be supplied to the hose line with a 
minimum of delay after actuation. 
7.5.4.3  Except when in actual use, pressure shall not be permitted to remain in the 
hose line. 



7.6 Training. 
7.6.1  Successful extinguishment of fire with hand hose lines greatly depends on the 
individual ability and technique of the operator. 
7.6.2  All personnel who are likely to use this equipment at the time of a fire shall be 
trained in its operation and in the fire-fighting techniques applicable to this 
equipment. 
Chapter 8 Standpipe Systems and Mobile Supply 
8.1 General Information. 
8.1.1* Description. A standpipe system shall be a fixed total flooding, local 
application, or hand hose line system without a permanently connected carbon dioxide 
supply. 
8.1.2* Uses. Standpipe systems shall be installed only with the approval of the 
authority having jurisdiction. 
8.1.3 General Requirements. Standpipe systems and mobile supply shall be installed 
and maintained in accordance with the requirements in Chapters 4, 5, 6, and 7, in 
addition to those outlined in Sections 8.2 through 8.5. 
8.1.3.1  Piping shall be installed in accordance with the requirements applicable for 
the system if a permanently connected supply is used. 
8.1.3.2  Appreciable lengths of piping on the portable supply shall be taken into 
account. 
8.2 Hazard Specifications. 
Standpipe systems and mobile supply shall be permitted to be used to protect hazards 
described in Chapters 4, 5, 6, and 7, where extinguishment will not be adversely 
affected by the delay in obtaining effective discharge of carbon dioxide while the 
mobile supply is being brought to the scene and coupled to the standpipe system. 
8.3 Standpipe Requirements. 
8.3.1  The supply piping of standpipe systems shall be equipped with quick-change 
couplings and shall terminate in an easily accessible and well-marked location for 
connection to the mobile supply. 
8.3.2  This location shall be marked with the amount of carbon dioxide required and 
the required duration of discharge. 
8.4 Mobile Supply Requirements. 
8.4.1* Capacity. The mobile supply shall have a capacity in accordance with the 
provisions of Chapters 4, 5, 6, and 7. 
8.4.2 Coupling. 
8.4.2.1  The mobile supply shall be provided with a means for transferring carbon 
dioxide into the standpipe system. 
8.4.2.2  Quick-change couplings shall be provided to permit these connections to be 
made as rapidly as possible. 
8.4.3 Mobility. 
8.4.3.1  The storage container or containers of carbon dioxide shall be mounted on a 
movable vehicle that can be brought to the scene of the fire by manual means, by a 
separate motor vehicle, or under its own power. 
8.4.3.2  The means of transporting the mobile supply shall be dependable and capable 
of getting to the fire with a minimum of delay. 
8.4.4 Location. The mobile supply shall be kept close to the hazards that it is intended 
to protect so that fire extinguishment can be started as soon as possible after the fire 
breaks out. 



8.4.5 Accessories. Mobile supply for standpipe systems shall be permitted to be 
provided with hand hose lines as accessory equipment for the protection of small 
scattered hazards or as a supplement to standpipe systems or other fixed protection. 
8.5* Training. 
It is imperative that those persons assigned to the units shall be trained in the use and 
maintenance of the standpipe systems and mobile supply. 
Chapter 9 Marine Systems 
9.1 Special Definitions. 
The following definitions shall apply to Chapter 9:                                                  
(1)  Marine systems (See 3.4.1.) 
(2)  Space                                                  
(a)  Cargo space (See 3.4.2.1.) 
(b)  Electrical equipment space (See 3.4.2.2.) 
(c)*  Machinery space (See 3.4.2.3.) 
(d)*  Vehicle space (See 3.4.2.4.)                                                
9.2 General. 
9.2.1* Outline. This chapter outlines the modifications necessary for marine systems. 
9.2.2  All other requirements of this standard shall apply to marine systems except as 
modified by this chapter. 
9.3 System Requirements. 
9.3.1 Components. System components shall be specifically listed or approved for 
carbon dioxide system marine applications. 
9.3.2 Operating Instructions. 
9.3.2.1  Instructions for the operation of the system shall be located in a conspicuous 
place at or near all manual controls and in the carbon dioxide storage room. 
9.3.2.2  For systems in which the carbon dioxide storage is not within the protected 
space, the operating instructions shall include a chart indicating the location of the 
emergency control to be used if the normal controls fail to operate. 
9.3.3 System Actuation. 
9.3.3.1  Two separate valves shall be provided for releasing carbon dioxide into any 
protected space. 
9.3.3.1.1  One valve shall control discharge from the carbon dioxide storage. 
9.3.3.1.2  The second valve shall control carbon dioxide discharge into the protected 
space(s). (See 4.5.4.6.) 
9.3.3.1.3  For systems that contain 300 lb (136 kg) of carbon dioxide storage or less, 
only one valve shall be required to be used for the release of the system provided that 
the protected space is normally unoccupied and has horizontal egress. 
9.3.3.2* Controls. 
9.3.3.2.1  A separate manually operated control shall be provided to operate each 
valve required by 9.3.3.1. 
9.3.3.2.2  A set of controls shall be located outside at least one of the main means of 
egress from each protected space. 
9.3.3.3*  In addition to the manually operated controls required by 9.3.3.2, each of the 
valves required by 9.3.3.1 shall be provided with its own emergency manual control. 
9.3.3.4 Release Box. 
9.3.3.4.1  Controls for the valves required by 9.3.3.2 shall be located inside a release 
box clearly identified for the protected space. 
9.3.3.4.2  If the box containing the controls is to be locked, a key to the box shall be 
provided in a break-glass-type enclosure conspicuously located adjacent to the box. 
9.3.3.5* Source of Power. 



9.3.3.5.1  In addition to the requirements of 4.3.3.4, audible predischarge alarms shall 
be provided that depend on no source of power other than carbon dioxide pressure. 
9.3.3.5.2  The time delay required by 4.3.3.2 shall be a minimum of 20 seconds and 
shall depend on no source of power other than carbon dioxide pressure. 
9.3.4 Carbon Dioxide Storage. 
9.3.4.1  Carbon dioxide storage shall be permitted inside normally unoccupied 
protected spaces for systems that contain not more than 300 lb (136 kg) of carbon 
dioxide storage and are equipped for automatic actuation. 
9.3.4.2  Low-pressure systems shall be provided with dual refrigeration units and shall 
be constructed in accordance with 46 CFR 58.20. 
9.3.4.3  When the carbon dioxide containers are located outside a protected space, 
they shall be stored in a room that shall be situated in a safe and readily accessible 
location and shall be effectively ventilated so that the agent containers are not 
exposed to ambient temperatures outlined in 4.6.5.5. 
9.3.4.3.1  Common bulkheads and decks located between agent container storage 
rooms and protected spaces shall be protected with A-60 class structural insulation as 
defined by 46 CFR 72. 
9.3.4.3.2  Doors and other means of closing any opening therein that form the 
boundaries between such rooms and adjoining protected spaces shall be gastight. 
9.3.4.3.3  Agent container storage rooms shall be accessible without having to pass 
through the space being protected. 
9.3.4.3.4  Access doors shall open outward. 
9.3.4.3.5  For systems that contain 300 lb (136 kg) of carbon dioxide storage or less, 
only one valve shall be required to be used for the release of the system provided that 
the protected space is normally unoccupied and has horizontal egress. 
9.3.5 System Piping. 
9.3.5.1*  Where necessary, drains shall be provided for the removal of accumulated 
moisture. 
9.3.5.2  Carbon dioxide piping shall not be fitted with drains or other openings within 
living quarters. 
9.3.5.3  Carbon dioxide piping shall be used for no other purpose, except that carbon 
dioxide piping shall be permitted to be used in an air-sampling-type smoke detection 
system. 
9.3.6 System Design. System design shall comply with Chapters 5, 6, and 7 except as 
described in 9.3.6.1 through 9.3.6.4.2. 
9.3.6.1 Machinery Spaces. Machinery spaces shall be designed to a 34-percent 
concentration based on the gross volume. 
9.3.6.1.1  Eighty-five percent of the concentration required by 9.3.6.1 shall be 
achieved within 2 minutes from the start of discharge. 
9.3.6.1.2  Gross volume shall include the casing. 
9.3.6.2 Cargo Spaces. Cargo spaces other than vehicle spaces shall be supplied with 
carbon dioxide based on 1 lb/30 ft3 based on the gross volume. 
9.3.6.2.1  The initial quantity of carbon dioxide discharged shall be based on the net 
volume of the space as determined by the amount of cargo in the cargo space. 
9.3.6.2.2  Additional carbon dioxide shall be released as needed to maintain control of 
the fire. 
9.3.6.2.3  Clear instructions shall be posted within the carbon dioxide storage room 
detailing the carbon dioxide release procedure. 
9.3.6.3 Vehicle Spaces. 



9.3.6.3.1  Vehicle spaces where the vehicles contain more than 5 gal (19 L) of fuel 
(gasoline or diesel) shall be designed to a 34-percent concentration based on the gross 
volume. 
9.3.6.3.2  Eighty-five percent of this concentration shall be achieved within 2 minutes 
from start of discharge. 
9.3.6.4 Vehicle Spaces. 
9.3.6.4.1  Vehicle spaces where the vehicles contain 5 gal (19 L) or less of fuel 
(gasoline or diesel) shall be designed to a 34-percent concentration based on the gross 
volume. 
9.3.6.4.2  Two-thirds of this concentration shall be achieved within 10 minutes from 
start of discharge. 
9.3.7 Electrical Equipment Spaces. Electrical equipment spaces shall be treated as a 
dry electrical hazard in accordance with Chapter 5. 
9.4 Inspection and Maintenance. 
Inspection and maintenance shall comply with 4.8.3 and Section 9.4. 
9.4.1 General. Prior to testing or maintenance of a fixed carbon dioxide system, all 
personnel shall be evacuated from the protected space. (See Section 4.3.) 
9.4.2 Approval of Installations. 
9.4.2.1  The approval test described in 9.4.2.1.1 through 9.4.2.1.4 shall be conducted 
prior to the tests required by 4.4.3. 
9.4.2.1.1  Pressure tests of the piping shall be performed to meet the requirements of 
9.4.2.1.2 through 9.4.2.1.4. 
9.4.2.1.2  The test medium shall be a dry, noncorrosive gas such as nitrogen or carbon 
dioxide. 
9.4.2.1.3  When pressurizing the piping, pressure shall be increased in 50 psi (3.5 bar) 
increments. 
9.4.2.1.4  Once the pressure in the pipe has reached the required test pressure, the 
pressure source shall be shut off and disconnected from the pipe. 
CAUTION:  Pneumatic pressure testing creates a potential risk of injury to personnel 
in the area, as a result of airborne projectiles, if rupture of the piping system occurs. 
Prior to the pneumatic pressure test, the area in which the pipe is located shall be 
evacuated and appropriate safeguards shall be provided for test personnel. 
9.4.2.2 High-Pressure Systems. 
9.4.2.2.1 Systems with Stop Valves. 
9.4.2.2.1.1  All piping from the carbon dioxide supply to the stop valves shall be 
subjected to a minimum pressure of 1000 psi (6895 kPa). 
9.4.2.2.1.2  The leakage during a 2-minute period shall not exceed a pressure drop of 
10 percent. 
9.4.2.2.1.3  All piping between the stop valves and the nozzles shall be subjected to a 
minimum pressure of 600 psi (4137 kPa). 
9.4.2.2.1.4  The leakage during a 2-minute period shall not exceed a pressure drop of 
10 percent. 
9.4.2.2.2 Systems Without Stop Valves. 
9.4.2.2.2.1  All piping from the carbon dioxide supply to the nozzles shall be 
subjected to a minimum pressure of 600 psi (4137 kPa). 
9.4.2.2.2.2  The leakage during a 2-minute period shall not exceed a pressure drop of 
10 percent. 
9.4.2.3 Low-Pressure Systems. 
9.4.2.3.1 Normally Pressurized Piping. 



9.4.2.3.1.1  All piping that is normally pressurized shall be subjected to a pressure test 
of minimum 300 psi (2068 kPa). 
9.4.2.3.1.2  No leakage shall be permitted from the piping during a 2-minute test. 
9.4.2.3.2 Piping Between the Tank Shutoff Valve and Nozzles. 
9.4.2.3.2.1  All piping between the tank shutoff valve and the nozzles shall be 
subjected to a minimum pressure test of 300 psi (2068 kPa). 
9.4.2.3.2.2  The leakage during a 2-minute period shall not exceed a pressure drop of 
10 percent. 
9.4.3 Predischarge Delays, Alarms, and Shutdowns. 
9.4.3.1  Predischarge delays and alarms and ventilation shutdowns shall be tested by 
flowing carbon dioxide into the system. 
9.4.3.2  Predischarge delays that are not accurate to within +20 percent/-0 percent at 
70°F (21°C) of their rating shall be replaced. 
9.4.4 Verification. Compliance with 9.3.2 shall be verified. 
Annex A Explanatory Material 
Annex A is not a part of the requirements of this NFPA document but is included for 
informational purposes only. This annex contains explanatory material, numbered to 
correspond with the applicable text paragraphs. 
A.1.1  Portable carbon dioxide equipment is covered in NFPA 10, Standard for 
Portable Fire Extinguishers. The use of carbon dioxide for inerting is covered in 
NFPA 69, Standard on Explosion Prevention Systems. 
A.1.3.5  Exposure to carbon dioxide discharge poses a hazard to personnel; therefore, 
additional safety features for all new installations and for retrofitting of existing 
systems are provided in Section 4.3. 
Safety to personnel is of paramount importance; therefore, these additional safety 
features should be installed as soon as possible but no later than August 7, 2006. 
The installation of the safety signs per 4.3.2 does not require any modifications to the 
installation and should be accomplished immediately. 
The addition of supervised lock-out valves, per 4.3.3.6 and 4.3.3.6.1, and pneumatic 
predischarge alarms and pneumatic time delays, per 4.5.5.7, require that the system 
flow calculations be verified and be in accordance with this standard. That is, the 
addition of piping equipment (valve and time delay) adds equivalent pipe length to the 
system. The pneumatic predischarge alarm requires carbon dioxide flow to sound. 
The revised design should be in accordance with the agent quantity requirements of 
this standard. 
These modifications could necessitate revisions to, upgrading of, or replacement of 
system components, including control units. 
As part of the process of implementing these modifications, the authority having 
jurisdiction should be consulted for additional recommendations or requirements. 
A.1.4  See Table A.1.4. 
 
Table A.1.4  Units  
Name of Unit Unit Symbol Conversion Factor  
pascal Pa 1 psi = 6894.757 Pa  
kilogram kg 1 lb = 0.4536 kg  
meter m 1 ft = 0.3048 m  
millimeter mm 1 in. = 25.4 mm  
Note: For additional conversions and information, see ASTM SI 10, Standard for Use 
of the International System of Units (SI): The Modern Metric System.  
 



If a value for measurement as given in this standard is followed by an equivalent 
value in other units, the first value stated is to be regarded as the requirement. A given 
equivalent value can be approximate. 
The conversion procedure for the SI units is to multiply the quantity by the conversion 
factor and then round the result to the appropriate number of significant digits. 
A.3.2.1 Approved. The National Fire Protection Association does not approve, 
inspect, or certify any installations, procedures, equipment, or materials; nor does it 
approve or evaluate testing laboratories. In determining the acceptability of 
installations, procedures, equipment, or materials, the authority having jurisdiction 
may base acceptance on compliance with NFPA or other appropriate standards. In the 
absence of such standards, said authority may require evidence of proper installation, 
procedure, or use. The authority having jurisdiction may also refer to the listings or 
labeling practices of an organization that is concerned with product evaluations and is 
thus in a position to determine compliance with appropriate standards for the current 
production of listed items. 
A.3.2.2 Authority Having Jurisdiction (AHJ). The phrase “authority having 
jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, 
since jurisdictions and approval agencies vary, as do their responsibilities. Where 
public safety is primary, the authority having jurisdiction may be a federal, state, 
local, or other regional department or individual such as a fire chief; fire marshal; 
chief of a fire prevention bureau, labor department, or health department; building 
official; electrical inspector; or others having statutory authority. For insurance 
purposes, an insurance inspection department, rating bureau, or other insurance 
company representative may be the authority having jurisdiction. In many 
circumstances, the property owner or his or her designated agent assumes the role of 
the authority having jurisdiction; at government installations, the commanding officer 
or departmental official may be the authority having jurisdiction. 
A.3.2.4 Listed. The means for identifying listed equipment may vary for each 
organization concerned with product evaluation; some organizations do not recognize 
equipment as listed unless it is also labeled. The authority having jurisdiction should 
utilize the system employed by the listing organization to identify a listed product. 
A.3.3.6 Normally Unoccupied. A normally unoccupied enclosure is one that is 
occasionally visited by personnel. Examples of areas considered normally unoccupied 
are transformer bays, switch-houses, pump rooms, vaults, engine test stands, cable 
vaults, cable spreading rooms, utility tunnels, microwave relay stations, flammable 
liquid storage areas, enclosed energy systems, shipboard cargo holds, robotic paint 
spray areas, and computer room subfloors. 
A.3.3.8.1 High Pressure. At 70°F (21°C), the pressure in this type of storage is 850 psi 
(5860 kPa). 
A.3.3.8.2 Low Pressure. At this temperature the pressure in this type of storage is 300 
psi (2068 kPa). 
A.3.3.10.3 Pre-Engineered System. Pre-engineered systems can incorporate special 
nozzles, flow rates, methods of application, nozzle placement, and quantities of 
carbon dioxide that could differ from those detailed elsewhere in this standard 
because they are designed for very specific hazards. All other requirements of the 
standard apply. It is possible for the normal manual control to qualify as the 
emergency manual control if the provisions of 4.5.1 are satisfied. 
The hazards protected by these systems are specifically limited as to type and size. 
Limitations on hazards that can be protected by these systems are contained in the 
manufacturer's installation manual, which is referenced as part of the listing. 



A.4.1.1  The choice of fire suppression agent should be determined at the early stages 
of hazard evaluation. Coordination among specifiers, consultants, AHJs, designers, 
purchasers, and building owners should determine agreement that carbon dioxide is 
the most suitable for the application. Total flooding carbon dioxide systems are not 
intended to be acceptable substitutes for Halon 1301 total flooding systems used for 
normally occupied enclosures. Some examples of normally occupied enclosures with 
surface fire hazards that should be considered for other types of clean fire-
extinguishing agents are offices, computer rooms, control rooms, data centers, and 
libraries. 
When verifying “equivalent levels of fire protection,” the designer should consider the 
hazard characteristics and fire-extinguishing agent limitations that may affect the 
system performance. Examples include the following:                                                  
(1)  Fast-growth fires 
(2)  High-energy output fires 
(3)  Deep-seated fires 
(4)  Fire suppression agent storage temperature limits 
(5)  Ambient temperature of hazard 
(6)  Design capabilities for unenclosable openings 
(7)  Design capabilities for extended discharge systems 
(8)  Contamination to product, surrounding area, or environment 
(9)  Requirements for continued operations in areas where persistent ignition 
sources may be present (e.g., specialized hazards associated with national defense, 
security, and special chemical or radioactive material handling) 
(10)  Undefined reaction of fire suppression agent to the hazard                                                
A.4.2.1  The discharge of liquid carbon dioxide is known to produce electrostatic 
charges that, under certain conditions, could create a spark. (See NFPA 77, 
Recommended Practice on Static Electricity.) 
Carbon dioxide does not extinguish fires where the following materials are actively 
involved in the combustion process:                                                  
(1)  Chemicals containing their own oxygen supply, such as cellulose nitrate 
(2)  Reactive metals such as sodium, potassium, magnesium, titanium, and 
zirconium 
(3)  Metal hydrides                                                
While carbon dioxide does not extinguish these fires, it does not react dangerously 
with these materials or increase their burning rate. Carbon dioxide, if used in this type 
of situation in a total flooding system, provides protection for adjacent combustibles 
or can be successfully used if the reactive metals or hydrides are first covered by 
another material. The following are examples of this latter condition:                                                  
(1)  Sodium stored or used under kerosene 
(2)  Cellulose nitrate in solution of lacquer thinner 
(3)  Magnesium chips covered with heavy oil                                                
For local application systems with attendant high velocity, directed discharge should 
not be used. 
A.4.3  The steps and safeguards necessary to prevent injury or death to personnel in 
areas where atmospheres will be made hazardous by the discharge of carbon dioxide 
can include the following provisions:                                                  
(1)  Provisions of adequate aisleways and routes of exit and keeping them clear at 
all times 
(2)  Provisions of necessary additional or emergency lighting, or both, and 
directional signs to ensure quick, safe evacuation 



(3)  Provisions of alarms within such areas that operate immediately upon 
activation of the system on detection of the fire, with the discharge of the carbon 
dioxide and the activation of automatic door closures delayed for sufficient time to 
evacuate the area before discharge begins 
(4)  Provisions of only outward swinging, self-closing doors at exits from 
hazardous areas and, where such doors are latched, provisions of panic hardware 
(5)  Provisions of continuous alarms at entrances to such areas until atmosphere 
has been restored to normal 
(6)  Provisions of odor added to the carbon dioxide so that hazardous atmospheres 
in such areas can be recognized 
(7)  Provisions of warning and instruction signs at entrances to and inside such 
areas 
(8)  Provisions of prompt discovery and rescue of persons rendered unconscious in 
such areas (This can be accomplished by having such areas searched by trained 
personnel equipped with proper breathing equipment immediately after carbon 
dioxide discharge stops. Those persons rendered unconscious by carbon dioxide can 
be restored by artificial respiration and without permanent injury, if removed quickly 
from the hazardous atmosphere. Self-contained breathing equipment and personnel 
trained in its use and in rescue practices, including artificial respiration, should be 
readily available.) 
(9)  Provisions of instruction and drills of all personnel within or in the vicinity of 
such areas, including maintenance or construction people who can be brought into the 
area, to ensure their correct action when carbon dioxide protection equipment operates 
(10)  Provisions of means for prompt ventilation of such areas (Forced ventilation 
will often be necessary. Care should be taken to dissipate hazardous atmospheres, not 
merely move them to another location. Carbon dioxide is heavier than air.) 
(11)  Provisions of other steps and safeguards necessary to prevent injury or death 
as indicated by careful study of particular situations                                                
A.4.3.1  The discharge of carbon dioxide in fire-extinguishing concentration creates 
serious hazards to personnel, such as suffocation and reduced visibility during and 
after the discharge period. 
A.4.3.1.3  It is recommended that self-contained breathing apparatus (SCBA) be 
provided for rescue purposes. 
A.4.3.3.1.1  All total flood hazards will be made unsafe for entry of unprotected 
personnel until such spaces are ventilated of carbon dioxide. Spaces containing 
equipment protected by local application systems could become unsafe, particularly if 
the protected equipment occupies a sizable portion of the volume of the room 
containing the equipment. Pits, cellars, and rooms adjacent to the protected hazard, 
especially those at lower elevations, can be made unsafe by migration of the 
discharged carbon dioxide. 
Oil of wintergreen is a common and recommended odorizer added to the discharging 
carbon dioxide to produce a distinctive odor that warns of the presence of carbon 
dioxide gas. Other odorizers that are specially appropriate for specific locations can 
also be used, but, if there is no specific reason to use an odorizer other than oil of 
wintergreen, oil of wintergreen should be used. 
Olfactory indicators could be inappropriate for applications such as cleanrooms, food 
processing, aluminum rolling mills, and telecommunications facilities since they 
could adversely affect the process or equipment. 
A.4.3.3.5  Contact with carbon dioxide in the form of dry ice can cause frostbite. 



A.4.3.3.6.2  Lock-out valves are to be installed on all total flooding systems as well as 
local application systems where carbon dioxide could migrate, creating a hazard to 
personnel. If the location of persons is where they cannot easily exit the protected 
space or spaces directly adjacent to protected spaces within the system's time delay 
period, the system should be locked out. 
A.4.3.3.8  Cylinder outlets should be fitted with safety covers or anti-recoil devices 
whenever the cylinder is not connected to the system piping. 
A.4.3.4.1  As used in this standard, clearance is the air distance between equipment, 
including piping and nozzles, and unenclosed or uninsulated live electrical 
components at other than ground potential. The minimum clearances listed in Table 
4.3.4.1 are for the purpose of electrical clearance under normal conditions; they are 
not intended for use as “safe” distances during fixed system operation. 
The clearances given in Table 4.3.4.1 and Figure 4.3.4.1 are for altitudes of 3300 ft 
(1000 m) or less. 
A.4.3.4.2  The clearances are based on minimum general practices related to design 
basic insulation level (BIL) values. 
A.4.3.4.3  Up to electrical system voltages of 161 kV, the design BIL kilovolts and 
corresponding minimum clearances, phase to ground, have been established through 
long usage. 
At voltages higher than 161 kV, uniformity in the relationship between design BIL 
kilovolts and the various electrical system voltages has not been established in 
practice. For these higher system voltages, it is common practice to use BILs 
dependent on the degree of protection that is to be obtained. For example, in 230 kV 
systems, BILs of 1050, 900, 825, 750, and 650 kV have been utilized. 
Required clearance to ground can also be affected by switching surge duty, a power 
system design factor that along with BIL must correlate with selected minimum 
clearances. Electrical design engineers can furnish clearances dictated by switching 
surge duty. Table 4.3.4.1 and Figure 4.3.4.1 deal only with clearances required by 
design BIL. 
A.4.3.4.4  Possible design variations in the clearance required at higher voltages are 
evident in Table 4.3.4.1, where a range of BIL values is indicated opposite the various 
voltages in the high-voltage portion of the table. 
A.4.3.5  This is equally important in all classes of fires since a persistent ignition 
source (e.g., an arc, heat source, oxyacetylene torch, or deep-seated fire) can lead to a 
recurrence of the initial event once the agent has dissipated. 
A.4.4.3  Where piping is not normally under pressure, it is possibly not bubbletight. 
However, where a slow discharge is involved, or if under continual pressure, 
bubbletightness should be a requirement. It is anticipated that full discharge tests will 
be waived by the authority having jurisdiction only under extremely unusual 
conditions. Factors such as extra cost and interruptions to production or business 
operations are not considered valid reasons for waiver of full discharge tests. 
A.4.5.1.3  The emergency manual control is intended for use only in the event of 
failure of automatic or normal manual actuation. 
A.4.5.2  Modern solid-state circuits, including microprocessors, are capable of 
responding to extremely short electrical impulses. While response to such transient 
signals is a desirable characteristic for some types of devices, it is an extremely 
undesirable characteristic for control units used to discharge carbon dioxide. Control 
units for releasing carbon dioxide systems must be designed to prevent unwanted 
discharges due to transient electrical impulses and to actuate predischarge alarms and 
time delays before discharging carbon dioxide. Undesired transient impulses can be 



introduced into the control panel from sources external to the panel, or unwanted 
transients can be generated within the control panel itself. 
For example, a microprocessor could produce undesired transient impulses for various 
reasons. Designs must incorporate technology to prevent discharge of carbon dioxide 
in the event that a microprocessor in the control unit emits spurious signals. If circuits 
that initiate carbon dioxide discharge are not designed to ignore such transients, an 
unwanted discharge could result. 
A.4.5.2.1  Technology is available to require actuation of predischarge time delays 
and alarms before actuating circuits to discharge carbon dioxide. This technology 
should be incorporated into control units that release carbon dioxide systems. 
Control units must be designed so that the normal failure mode of the circuitry that 
releases carbon dioxide is to not discharge the carbon dioxide. 
The emergency manual release required in 4.5.1.3.1 of this standard provides a means 
to discharge carbon dioxide in case the electrical controls fail to cause a required 
discharge. 
A.4.5.3  Detectors installed at the maximum spacing as listed or approved for fire 
alarm use can result in excessive delay in agent release. 
For additional information on detectors refer to NFPA 72, National Fire Alarm Code. 
A.4.5.4.4  It is intended that initial actuation of a system by means of a normal manual 
control will result in a complete time delay sequence prior to system discharge. If 
system actuation is initiated by automatic means, subsequent operation of a normal 
manual control should not restart the time delay sequence. 
A.4.5.4.5  It is possible for the normal manual control to qualify as the emergency 
manual control if the provisions of 4.5.1 are satisfied. If possible, the system should 
be designed so that emergency actuation can be accomplished from one location. 
A.4.5.4.6  It is not the intent of this standard to prohibit the use of more pilot cylinders 
than the minimum number required in this paragraph. 
On systems using discharge pressure from pilot cylinders (discharge manifold back 
pressure) to activate the slave cylinders, one more pilot cylinder than the minimum 
required to actuate the system is installed. This requirement provides assurance that 
the system will completely discharge even if one of the pilot cylinders has leaked. 
A.4.5.4.6.4  Modern solid state circuits, including microprocessors, are capable of 
responding to extremely short electrical impulses. While response to such transient 
signals is a desirable characteristic for some types of devices, it is an extremely 
undesirable characteristic for control units used to discharge carbon dioxide. Control 
units for releasing carbon dioxide systems must be designed to prevent unwanted 
discharges due to transient electrical impulses and to actuate predischarge alarms and 
time delays before discharging carbon dioxide. 
Control units must be designed so that the normal failure mode of the circuitry that 
releases carbon dioxide is to not discharge the carbon dioxide. The emergency manual 
release required in 4.5.1.3 of this standard provides a means to discharge carbon 
dioxide in case the electrical controls fail to cause a required discharge. 
A.4.5.5.3  Examples of interconnections between the components that are necessary 
for the control of the system and life safety are detection, actuation, alarms, power 
sources, main tank shutoff valve, pilot vapor supply valve, and lock-out devices. 
A.4.5.6  Refer to NFPA 72, National Fire Alarm Code, for guidance for installation of 
referenced visual alarms. The public mode for visual appliance operation should be 
used. 
A.4.5.6.1  Examples of hazard areas where the provision of a time delay could result 
in unacceptable risk to personnel or unacceptable damage to critical pieces of 



equipment are combustion gas turbines and engine test cells. Fires in such equipment 
tend to be fast growth, and delay in the discharge of the fire-extinguishing agent can 
result in destruction of essential equipment or unacceptable risk to personnel. These 
are normally unoccupied spaces. When such spaces are occupied by personnel, the 
systems must be locked out to prevent discharge of carbon dioxide without the benefit 
of a predischarge alarm and time delay. 
Where pneumatic time delays are not provided for normally unoccupied hazards, 
documented procedural control of access by personnel to the protected area should be 
enforced. The procedures should require lock-out/tag-out of the carbon dioxide 
system anytime the protected space is entered by personnel. Documentation and 
records should be provided to the authority having jurisdiction to verify that all 
procedures are being enforced. 
A.4.5.6.4  Alarm(s) should be connected to existing protective signaling (fire alarm) 
system(s) to aid life safety and property protection as outlined in NFPA 72, National 
Fire Alarm Code, and NFPA 101, Life Safety Code. 
A.4.6.1  Not all of the carbon dioxide in the low-pressure container can be rapidly 
discharged. As the storage container empties, a quantity of cold carbon dioxide vapor 
will remain in the container. The quantity of this residual vapor will vary depending 
on the physical configuration of the container. This residual vapor should be 
considered in determining the storage capacity. 
A.4.6.3  Carbon dioxide, as normally manufactured, is an extremely pure product. In 
general, the industry produces only one grade or quality. This grade is considered 
suitable for all applications, including food and medical uses. 
Dry carbon dioxide gas or liquid is completely noncorrosive to the containers. Carbon 
dioxide containing excess water can cause some corrosion in high-pressure cylinders, 
particularly in lightweight cylinders that are highly stressed. Excess water is present 
when the amount exceeds the normal solubility in liquid carbon dioxide, so that actual 
water can condense out on the walls of the container. 
Carbon dioxide produced in modern low-pressure plants must necessarily have a very 
low water content to avoid operating difficulties. The normal practice is to maintain 
the water content below about 0.03 percent (32 ppm) by weight. If this dry product is 
stored and transported in clean bulk low-pressure equipment, the quality will be 
maintained until it is used. 
Dry ice normally contains more water and oil than does liquid carbon dioxide. It also 
tends to freeze moisture and other impurities from the atmosphere, because of its very 
low temperature of -109.3°F (-79°C). When dry ice is placed in a converter and 
allowed to warm up so that it becomes liquid carbon dioxide, the liquid so produced 
will obviously contain an excess amount of water. This liquid should not be used to 
charge fire-extinguishing cylinders, unless it is further processed through a 
dehydrating unit to remove the excess water. It should also be noted that such 
dehydrating units can become ineffective unless the drying agent is renewed or 
reactivated as necessary to maintain its drying ability. 
There are still a few high-pressure carbon dioxide production plants in service. The 
carbon dioxide produced in these plants can also contain excess water, unless the 
dehydrating equipment is kept in good condition. The only positive way to be assured 
of proper quality is to analyze periodically the carbon dioxide supply used for 
charging fire protection systems. 
A.4.6.5  In high-pressure storage systems, the temperature of the contained carbon 
dioxide depends on the ambient temperature at the storage location. The containers 



must therefore be capable of withstanding the pressures developed at the highest 
expected temperature. 
The maximum pressure in the cylinder is also affected by the filling density or percent 
filling, which is the ratio expressed in the percentage of the carbon dioxide weight to 
the water capacity in pounds. The filling density commonly used is between 60 
percent and 68 percent, the latter being the maximum allowed by the U.S. Department 
of Transportation (DOT) in Sections 178.36 and 178.37 of 49 CFR 171–190. Proper 
filling is determined by weight stamped on the valve body. 
A.4.6.5.1  High-pressure cylinders can be constructed, tested, and marked in 
accordance with U.S. Department of Transportation specifications or Transport 
Canada specifications. 
Transporting of a charged cylinder could be illegal where the cylinder has been 
damaged or exposed to fire. Federal and local regulations should be consulted. 
A typical high-pressure storage facility using a number of cylinders is shown in 
Figure A.4.6.5.1. Flexible connectors are used between each cylinder and the common 
manifold to facilitate the problem of check-weighing cylinders and replacing 
cylinders after use. Each cylinder is provided with its own valve with a dip tube 
extending to the bottom. Some older types of cylinders do not have dip tubes and are 
installed upside down to ensure discharge of liquid carbon dioxide. 
 
FIGURE A.4.6.5.1  A Typical High-Pressure Storage Facility. 
A.4.6.6  In low-pressure storage systems, the temperature of the contained carbon 
dioxide is controlled at about 0°F (-18°C) by means of insulation and refrigeration. 
The normal pressure is thus maintained at about 300 psi (2068 kPa). Welded pressure 
vessels are used for this service, and there is no special limitation as far as size is 
concerned. 
The filling density has no effect on the pressure as long as there is sufficient vapor 
space to allow for expansion of the liquid at the maximum storage temperature and 
pressure. This filling density would be determined by the setting or the pressure relief 
valves. In general, the filling density can range from 90 percent to 95 percent. The 
maximum liquid level is controlled, during filling, by means of a short dip tube that 
returns excess liquid to the delivery unit when the liquid reaches the maximum filling 
level in the storage unit. A liquid level gauge is also provided to indicate the quantity 
of carbon dioxide in storage. 
A typical low-pressure storage facility is shown in Figure A.4.6.6. In this unit the 
insulated pressure vessel is covered with an outer metal housing that is sealed to keep 
out water moisture. A standard air-cooled refrigeration unit is mounted at one end, 
with its cooling coils mounted within the pressure vessel. This unit is electrically 
powered and automatically controlled by means of a pressure switch. 
 
FIGURE A.4.6.6  A Typical Low-Pressure Storage Facility. 
A.4.6.6.2  A special relief valve (in addition to code requirements) can be provided 
for controlled bleedoff at a pressure below the setting of the main safety valve. 
A.4.7.1  Piping should be installed in accordance with good commercial practices and 
the equipment manufacturer's recommendations. 
All piping should be laid out to reduce friction losses to a reasonable minimum, and 
care should be taken to avoid possible restrictions due to foreign matter or faulty 
fabrication. 
Examples are hot-dipped galvanized inside and out or stainless steel. 



A.4.7.1.3  The use of flexible piping or hose in a carbon dioxide system introduces a 
number of things to be considered that do not affect rigid piping. One of these is the 
nature of any changes of direction. The minimum radius of curvature for any flexible 
hose to be used in a carbon dioxide system should not be less than indicated by the 
manufacturer's data, usually shown in the listing information for a particular system. 
Other areas of concern are resistance to the effects of vibration, flexure, tension, 
torsion, temperature, flame, compression, and bending. It is also necessary for the 
hose to have the strength to contain the carbon dioxide during discharge and to be 
made of materials that will be resistant to atmospheric corrosion. 
A.4.7.1.7.1  In performing the calculation, the guidelines provided in the FSSA 
publication Pipe Design Handbook for Use with Special Hazard Fires Suppression 
Systems should be consulted. 
A.4.7.1.8.1  The FSSA guide referenced in A.4.7.1.7.1 should also be consulted for 
low-pressure systems. 
A.4.7.2  ASME B31.1, Power Piping Code, should be consulted for guidance on this 
matter. 
A.4.7.4  The discharge nozzle consists of the orifice and any associated horn, shield, 
or baffle. 
A.4.7.4.4  Formerly, a plus sign following the orifice code number indicated an 
equivalent diameter  in. (0.4 mm) greater than that indicated by the numbering system 
[e.g., No. 4 indicated an equivalent diameter of  in. (3.18 mm); a No. 4+,  in. (3.57 
mm)]. 
A.4.7.4.4.3  For examples of equivalent orifice diameters, see Table A.4.7.4.4.3. The 
orifice code numbers indicate the equivalent single-orifice diameter in  in. (0.8 mm) 
increments. 
 
Table A.4.7.4.4.3  Equipment Orifice Sizes  
 Equivalent Single-Orifice Diameter  Equivalent Single-Orifice Area
  
Orifice Code No. in. mm  in.2 mm2  
1  0.79  0.0008 0.49  
1.5  1.19  0.0017 1.11  
2  1.59  0.0031 1.98  
2.5  1.98  0.0047 3.09  
3  2.38  0.0069 4.45  
3.5  2.78  0.0094 6.06  
4  3.18  0.0123 7.94  
4.5  3.57  0.0155 10.00  
5  3.97  0.0192 12.39  
5.5  4.37  0.0232 14.97  
6  4.76  0.0276 17.81  
6.5  5.16  0.0324 20.90  
7  5.56  0.0376 24.26  
7.5  5.95  0.0431 27.81  
8 ¼ 6.35  0.0491 31.68  
8.5  6.75  0.0554 35.74  
9  7.14  0.0621 40.06  
9.5  7.54  0.0692 44.65  
10  7.94  0.0767 49.48  
11  8.73  0.0928 59.87  



12  9.53  0.1105 71.29  
13  10.32  0.1296 83.61  
14  11.11  0.1503 96.97  
15  11.91  0.1725 111.29  
16 ½ 12.70  0.1964 126.71  
18  14.29  0.2485 160.32  
20  15.88  0.3068 197.94  
22  17.46  0.3712 239.48  
24 ¾ 19.05  0.4418 285.03  
32 1 25.40  0.785 506.45  
48 1½ 38.40  1.765 1138.71  
64 2 50.80  3.14 2025.80  
 
A.4.7.5.1  For further explanation see Annex C. 
A.4.8.1  An inspection is a quick check to give reasonable assurance that the 
extinguishing system is fully charged and operable. It is done by seeing that the 
system is in place, that it has not been actuated or tampered with, and that there is no 
obvious physical damage or condition to prevent operation. As a minimum, the 
inspection should determine the following:                                                  
(1)  High-pressure cylinders are in place and properly secured. 
(2)  For a low-pressure storage unit, the pressure gauge shows normal pressure, 
that the tank shutoff valve is open, and that the pilot pressure supply valve is open. 
The liquid level gauge should be observed. If at any time a container shows a loss of 
more than 10 percent, it should be refilled, unless the minimum gas requirements are 
still provided. 
(3)  Carbon dioxide storage is connected to discharge piping and actuators. 
(4)  All manual actuators are in place and tamper seals are intact. 
(5)  Nozzles are connected, properly aligned, and free from obstructions and 
foreign matter. 
(6)  Detectors are in place and free from foreign matter and obstructions. 
(7)  System control panel is connected and showing “normal-ready” condition.                                      
A.4.8.3  The manufacturer's maintenance procedure should be guided by the 
following outline:                                                  
(1)  System                                                  
(a)  Check overall physical appearance. 
(b)  Disarm system prior to test. 
(2)  Hazard                                                  
(a)  Check size. 
(b)  Check configuration. 
(c)  Check unclosable openings. 
(d)  Check fuels. 
(e)  Check other aspects that could affect effectiveness of the extinguishing 
systems. 
(3)  Supervised circuits                                                  
(a)  Exercise all functions. 
(b)  Check all electrical or pneumatic supervisory circuits for proper operation. 
(4)  Control panel                                                  
(a)  Exercise all functions. 
(b)  Check supervision, if applicable, of each circuit (including releasing devices) 
as recommended by the manufacturer. 



(5)  Power supply                                                  
(a)  Check routing, circuit breakers, fuses, disconnects. 
(6)  Emergency power                                                  
(a)  Check battery condition. 
(b)  Check charger operation; check fuse. 
(c)  Check automatic changeover. 
(d)  Check maintenance of generator (if one exists). 
(7)  Detectors                                                  
(a)  Test each detector using heat or smoke or manufacturer's approved test device. 
(SeeNFPA 72, National Fire Alarm Code.) 
(b)  Electric type                                                  
i.  Clean and adjust smoke detector and check sensitivity. 
ii.  Check wiring condition. 
(c)  Pneumatic type                                                  
i.  Check tightness of tubing and operation of mercury checks, using manometer. 
(8)  Time delay                                                  
(a)  Exercise functions. 
(b)  Check time limit. 
(c)  Check that timer will complete its cycle even if wiring between it and the 
detector circuit is interrupted. 
(9)  Alarms                                                  
(a)  Test for operation (audible and visual). 
(b)  Check to see that warning signs are properly displayed. 
(10)  Selector (directional) valves                                                  
(a)  Exercise functions. 
(b)  Reset properly. 
(11)  Release devices                                                  
(a)  Check for complete closure of dampers. 
(b)  Check doors; check for any doors that are blocked open. 
(12)  Equipment shutdown                                                  
(a)  Test shutdown function. 
(b)  Check adequacy (all necessary equipment included). 
(13)  Manual releases                                                  
(a)  Mechanical type                                                  
i.  Check pull, force, and length of pull required. 
ii.  Operate and adjust all devices. 
iii.  Check tightness of connectors. 
iv.  Check condition of conduit. 
v.  Check condition and operation of corner pulleys. 
(b)  Electric type                                                  
i.  Test manual release. 
ii.  Check that covers are in place. 
(c)  Check pneumatic releases. 
(d)  Check accessibility during fire. 
(e)  Separate main and reserve manual pulls that require only one operation, to 
obtain discharge of either main or reserve supply of gas. 
(f)  Clearly mark and identify all manual releases. 
(14)  Piping                                                  
(a)  Check security; check that piping is adequately supported. 
(b)  Check condition; check for any corrosion. 



(15)  Nozzles                                                  
(a)  Check orientation and orifice size; make sure they are unchanged from 
original design. 
(b)  Check cleanliness. 
(c)  Check security. 
(d)  Check seals where needed. 
(16)  Containers                                                  
(a)  Check physical condition; check for any sign of corrosion. 
(b)  Check the contents for weight by acceptable methods for each cylinder or low-
pressure tank. (If the contents are more than 10 percent below the normal capacity, 
refilling is required. Proper operation of the liquid level gauge should be verified.) 
(c)  Check that cylinders are securely held in position. 
(d)  Check hydrostatic test date. 
(e)  Check cylinder connectors for integrity and condition. 
(f)  Check weights and cables of mechanical release system. 
(g)  Release devices; check for proper arrangement and security. 
(h)  Check explosive release devices; check replacement date and check condition. 
(17)  Tests                                                  
(a)  Perform recommended discharge tests if there is any question about the 
adequacy of the system. 
(b)  Perform recommended full discharge test if cylinder hydrostatic test is 
required. 
(18)  Return all parts of system to full service. 
(19)  Give certificate of inspection to owner.                                                
Regular service contracts with the manufacturer or installing company are 
recommended. Work should be performed by personnel thoroughly trained and 
regularly engaged in providing such service. 
A.4.8.3.6  Due to the nature of the hazard or environmental conditions, more frequent 
tests could be necessary. 
A.4.8.4  Persons who inspect, test, or maintain carbon dioxide systems should be 
trained and periodically tested for competence in the functions they perform. 
Attending training programs offered by equipment manufacturers and other training 
organizations should be considered. 
A.5.1.2  This ensures the complete and permanent extinguishment of the fire in the 
specific combustible material or materials involved. 
A.5.2.1  Under this class of protection, a reasonably well-enclosed space is assumed 
in order to minimize the loss of the extinguishing medium. The area of allowable 
unclosable openings depends on the type of combustibles involved. 
A.5.2.1.1  Where two or more hazards by reason of their proximity are expected to be 
simultaneously involved in fire, each hazard should be protected with an individual 
system, protected with the combination arranged to operate simultaneously, or 
protected with a single system that should be sized and arranged to discharge on all 
potentially involved hazards simultaneously. 
A.5.2.1.3  For deep-seated fires, low-level openings should be avoided regardless of 
the relief requirements in order to maintain a concentration for as long as necessary. 
Relief vents under these conditions should be as high within the enclosure as possible. 
A.5.2.3  Practically all hazards that contain materials that produce surface fires can 
contain varying amounts of materials that could produce deep-seated fires. Proper 
selection of the type of fire that the system should be designed to extinguish is 



important and, in many cases, will require sound judgment after careful consideration 
of all the various factors involved. 
Basically, such a decision will be based on the answers to the following questions:                                     
(1)  Will a deep-seated fire develop, considering the speed of detection and 
application of the contemplated system? 
(2)  If a deep-seated fire does develop, will it be of a minor nature, will the 
circumstances be such that it will not cause a reflash of the material that produced the 
surface fire, and can arrangements be set up to put it out manually after the carbon 
dioxide discharge before it causes trouble? 
(3)  Are the values involved or the importance of equipment involved such that the 
ultimate protection is justified regardless of the extra cost of providing a system that 
will extinguish deep-seated fires?                                                
It will be seen that, with a remote possibility of a deep-seated fire causing trouble, 
there are many cases where taking this remote risk can be justified, and a system to 
extinguish surface fires can properly be selected. As an example, electrical 
transformers and other oil-filled electrical equipment have commonly been treated as 
producing surface fires, although there can be a chance that a heated core will produce 
a deep-seated fire in electrical insulation. On the other hand, the importance of some 
of the electrical equipment to production can be such that treating the hazard as a 
deep-seated fire will be justified. 
Often a decision will involve consultation with the authority having jurisdiction and 
with the owner and the engineers of the company supplying the equipment. The cost 
comparison between a system that is designed to extinguish a surface fire and one 
designed to extinguish a deep-seated fire can be the deciding factor. In all cases, it is 
advisable that all interested parties are fully aware of any risks involved if the system 
is designed to extinguish only a surface fire and of the additional costs that are 
involved if a system is designed to extinguish a deep-seated fire. 
A.5.2.3.1  Surface fires are the most common hazard particularly adaptable to 
extinguishment by total flooding systems. 
A.5.2.3.2  In any event, it is necessary to inspect the hazard immediately thereafter to 
make certain that extinguishment is complete and to remove any material involved in 
the fire. 
A.5.3.2.2  The theoretical minimum carbon dioxide concentration and the minimum 
design carbon dioxide concentration to prevent ignition of some common liquids and 
gases are given in Table 5.3.2.2. 
A.5.3.3.1  Because the average small space has proportionately more boundary area 
per enclosed volume than a larger space, greater proportionate leakages are 
anticipated and accounted for by the graded volume factors in Table 5.3.3(a) and 
Table 5.3.3(b). 
The least gas quantities for the smallest volumes are tabulated in order to clarify the 
intent of column B in Table 5.3.3(a) and Table 5.3.3(b) and thus avoid possible 
overlapping at borderline volumes. 
A.5.3.5.1  Where forced ventilation is not a consideration, leakage of a carbon 
dioxide–air mixture from an enclosed space will depend on one or more of the 
following parameters:                                                  
(1)  Temperature of Enclosure. Carbon dioxide will not expand as much at a low 
temperature and will be more dense; thus, a greater amount will leak out if the 
openings are in the lower portion of the enclosure. 



(2)  Volume of Enclosure. The percent of total volume of carbon dioxide lost 
through any given opening in a small enclosure will be much greater than that from 
the same opening in a large enclosure. 
(3)  Venting. An opening at or near the ceiling is usually desirable to permit 
exhausting the lighter gases from the room during the discharge. 
(4)  Location of Openings. Because carbon dioxide is heavier than air, there could 
be little or no loss of carbon dioxide from openings near the ceiling, while the loss at 
the floor level could be substantial.                                                
A.5.3.5.3  Hazards located in enclosures that are normally at temperatures above 
200°F (93°C) can be more susceptible to re-ignition. Therefore, additional carbon 
dioxide is advisable to hold the extinguishing concentrations for a longer period of 
time, allowing the extinguished material to cool down and thereby reduce the chances 
of re-ignition when the gas dissipates. 
A.5.3.5.5  Under normal conditions, surface fires are usually extinguished during the 
discharge period. 
A.5.3.5.7  Testing has shown that carbon dioxide applied directly to the liquid surface 
by local application–type nozzles can be necessary to provide the required cooling to 
prevent re-ignition after the end of the carbon dioxide discharge. 
A.5.4.1  Although specific test data are lacking, it is recognized that certain types of 
deep-seated fires can require holding times in excess of 20 minutes. The quantity of 
carbon dioxide for deep-seated–type fires is based on fairly tight enclosures. 
A.5.4.2  For combustible materials capable of producing deep-seated fires, the 
required carbon dioxide concentrations cannot be determined with the same accuracy 
possible with surface-burning materials. The extinguishing concentration will vary 
with the mass of material present because of the thermal insulating effects. Flooding 
factors have therefore been determined on the basis of practical test conditions. 
A.5.4.2.1  Generally, the flooding factors have been found to provide proper design 
concentrations for the rooms and enclosures listed. 
For further information, see Annex D. 
Depending on combustibility, these hazards might not involve deep-seated fires. (See 
5.3.5.6.) 
A.5.5.2  The minimum rates established are considered adequate for the usual surface 
or deep-seated fire. However, where the spread of fire can be faster than normal for 
the type of fire, or where high values or vital machinery or equipment are involved, 
rates higher than the minimums can, and in many cases should, be used. Where a 
hazard contains material that will produce both surface and deep-seated fires, the rate 
of application should be at least the minimum required for surface fires. Having 
selected a rate suitable to the hazard, the tables and information that follow should be 
used or such special engineering as is required should be carried out to obtain the 
proper combination of container releases, supply piping, and orifice sizes that will 
produce this desired rate. 
The leakage rate from an enclosure in the absence of forced ventilation depends 
mainly on the difference in density between the atmosphere within the enclosure and 
the air surrounding the enclosure. The following equation can be used to calculate the 
rate of carbon dioxide loss, assuming that there is sufficient leakage in the upper part 
of the enclosure to allow free ingress of air: 
 
where: 
R = rate of CO2 [lb/min (kg/min)] 
C = CO2 concentration fraction 



 = density of CO2 vapor [lb/ft3 (kg/m3)] 
A = area of opening [ft2 (m2) (flow coefficient included)]* 
g = gravitational constant [32.2 ft/sec2 (9.81 m/sec2)] 
1 = density of atmosphere [lb/ft3 (kg/m3)] 
2 = density of surrounding air [lb/ft3 (kg/m3)] 
h = static head between opening and top of enclosure [ft (m)] 
*If there are openings in the walls only, the area of the wall openings can be divided 
by 2 for calculations because it is presumed that fresh air can enter through one-half 
of the openings and that protective gas will exit through the other half. 
Figure E.1(b) can be used as a guide in estimating discharge rates for extended 
discharge systems. The curves were calculated using the preceding equation assuming 
a temperature of 70°F (21°C) inside and outside the enclosure. In an actual system, 
the inside temperature will normally be reduced by the discharge, thus increasing the 
rate of loss. Because of the many variables involved, a test of the installed system 
could be needed to ensure proper performance. 
Where leakage is appreciable, the design concentration should be obtained quickly 
and maintained for an extended period of time. Carbon dioxide provided for leakage 
compensation should be applied at a reduced rate. The extended rate of discharge 
should be sufficient to maintain the minimum concentration. 
A.5.5.2.1  Normally the measured discharge time is considered to be the time when 
the measuring device starts to record the presence of carbon dioxide until the design 
concentration is achieved. 
A.5.5.3  For enclosed recirculating-type electrical equipment, the initial discharge 
quantity should not be less than 1 lb (0.45 kg) of gas for each 10 ft3 (1.6 kg/m3) of 
enclosed volume up to 2000 ft3 (56.6 m3). For larger volumes, 1 lb of gas for each 12 
ft3 (1.3 m3) or a minimum of 200 lb (90.8 kg) should be used. Table A.5.5.3(a) and 
Table A.5.5.3(b) can be used as a guide to estimate the quantity of gas needed for the 
extended discharge to maintain a minimum concentration of 30 percent for the 
deceleration time. The quantity is based on the internal volume of the machine and the 
deceleration time, assuming average leakage. For dampered, nonrecirculating-type 
machines, add 35 percent to the indicated quantities in Table A.5.5.3(a) and Table 
A.5.5.3(b) for extended discharge protection. 
 
Table A.5.5.3(a)  Extended Discharge Protection for Enclosed Recirculating Rotating 
Electrical Equipment (Cubic Feet Protected for Deceleration Time)  
 Time (minutes)  
lb CO2 5 10 15 20 30 40 50 60  
100 1,200 1,000 800 600 500 400 300 200  
150 1,800 1,500 1,200 1,000 750 600 500 400  
200 2,400 1,950 1,600 1,300 1,000 850 650 500  
250 3,300 2,450 2,000 1,650 1,300 1,050 800 600  
300 4,600 3,100 2,400 2,000 1,650 1,300 1,000 700  
350 6,100 4,100 3,000 2,500 2,000 1,650 1,200 900  
400 7,700 5,400 3,800 3,150 2,500 2,000 1,600 1,200  
450 9,250 6,800 4,900 4,000 3,100 2,600 2,100 1,600  
500 10,800 8,100 6,100 5,000 3,900 3,300 2,800 2,200  
550 12,300 9,500 7,400 6,100 4,900 4,200 3,600 3,100  
600 13,900 10,900 8,600 7,200 6,000 5,200 4,500 3,900  
650 15,400 12,300 9,850 8,300 7,050 6,200 5,500 4,800  
700 16,900 13,600 11,100 9,400 8,100 7,200 6,400 5,600  



750 18,500 15,000 12,350 10,500 9,150 8,200 7,300 6,500  
800 20,000 16,400 13,600 11,600 10,200 9,200 8,200 7,300  
850 21,500 17,750 14,850 12,700 11,300 10,200 9,100 8,100  
900 23,000 19,100 16,100 13,800 12,350 11,200 10,050 9,000  
950 24,600 20,500 17,350 14,900 13,400 12,200 11,000 9,800  
1,000 26,100 21,900 18,600 16,000 14,500 13,200 11,900 10,700  
1,050 27,600 23,300 19,900 17,100 15,600 14,200 12,850 11,500  
1,100 29,100 24,600 21,050 18,200 16,600 15,200 13,750 12,400  
1,150 30,600 26,000 22,300 19,300 17,700 16,200 14,700 13,200  
1,200 32,200 27,300 23,550 20,400 18,800 17,200 15,600 14,100  
1,250 33,700 28,700 24,800 21,500 19,850 18,200 16,500 14,900  
1,300 35,300 30,100 26,050 22,650 20,900 19,200 17,450 15,800  
1,350 36,800 31,400 27,300 23,750 22,000 20,200 18,400 16,650  
1,400 38,400 32,800 28,550 24,900 23,100 21,200 19,350 17,500  
1,450 39,900 34,200 29,800 26,000 24,200 22,200 20,300 18,350  
1,500 41,400 35,600 31,050 27,100 25,250 23,200 21,200 19,200  
 
 
Table A.5.5.3(b)  Extended Discharge for Enclosed Recirculating Rotating Electrical 
Equipment (Cubic Meters Protected for Deceleration Time) (SI Units)  
 Time (minutes)  
kg CO2 5 10 15 20 30 40 50 60  
45.4 34.0 28.3 22.6 17.0 14.2 11.3 8.5 5.7  
68.1 50.9 42.5 34.0 28.3 21.2 17.0 14.0 11.3  
90.8 67.9 55.2 45.3 36.8 28.3 24.1 18.4 14.2  
113.5 93.4 69.3 56.6 46.7 36.8 29.7 22.6 17.0  
136.2 130.2 87.7 67.9 56.6 46.7 36.8 28.3 19.8  
158.9 172.6 116.0 84.9 70.8 56.6 46.7 34.0 25.5  
181.6 217.9 152.8 107.5 89.1 70.8 56.6 45.3 34.0  
204.3 261.8 192.4 138.7 113.2 87.7 73.6 59.4 45.3  
227.0 305.6 229.2 172.6 141.5 110.4 93.4 79.2 62.3  
249.7 348.1 268.9 209.4 172.6 138.7 118.9 101.9 87.7  
272.4 393.4 308.5 243.4 203.8 169.8 147.2 127.4 110.4  
295.1 435.8 348.1 278.8 234.9 199.5 175.5 155.7 135.8  
317.8 478.3 384.9 314.1 266.0 229.2 203.8 181.1 158.5  
340.5 523.6 424.5 349.5 297.2 258.9 232.1 206.6 184.0  
363.2 586.0 464.1 384.9 328.3 288.7 260.4 232.1 206.6  
385.9 608.4 502.3 420.3 359.4 319.8 288.7 257.5 229.2  
408.6 650.9 540.5 455.6 390.5 349.5 317.0 284.4 254.7  
431.3 696.2 580.2 491.0 421.7 379.2 345.3 311.3 277.3  
454.0 738.6 619.8 526.4 452.8 410.4 373.6 336.8 302.8  
476.7 781.1 659.4 563.2 483.9 441.5 401.9 363.7 325.5  
499.4 823.5 696.2 595.7 515.1 469.8 430.2 389.1 350.9  
522.1 866.0 735.8 631.1 546.2 500.9 458.5 416.0 373.6  
544.8 911.3 772.6 666.5 577.3 532.0 486.8 441.5 399.0  
567.5 953.7 812.2 701.8 609.4 561.8 515.1 467.0 421.7  
590.2 999.0 851.8 737.2 641.0 591.5 543.4 493.8 447.1  
612.9 1041.4 888.6 772.6 672.1 622.6 571.7 520.7 471.2  
635.6 1086.7 928.2 808.0 704.7 653.7 600.0 547.6 495.3  
658.3 1129.2 967.9 843.3 735.8 684.9 628.3 574.5 519.3  



681.0 1171.6 1007.5 878.7 766.9 713.2 656.6 600.0 543.4  
 
A.5.5.4.2  Methods available to compensate for temperature exposures include 
reduced filling density for high temperatures and nitrogen super-pressurization 
combined with reduced filling density for low temperatures. Manufacturers should be 
consulted for advice. 
A.5.6.1  The pressure venting consideration involves such variables as enclosure 
strength and injection rate. 
A.5.6.2  Porosity and leakages such as at doors, windows, and dampers, though not 
readily apparent or easily calculated, have been found to provide sufficient relief for 
the normal carbon dioxide flooding systems without need for additional venting. 
Record storage rooms, refrigerated spaces, and ductwork have also been found to 
need no additional venting when tested under their average system conditions. 
In many instances, particularly when hazardous materials are involved, relief 
openings are already provided for explosion venting. These and other available 
openings often provide adequate venting. 
General construction practices provide the guide in Table A.5.6.2 for considering the 
normal strength and allowable pressures of average enclosures. 
 
Table A.5.6.2  Strength and Allowable Pressures for Average Enclosures  
   Water  
Type Construction Windage (mph) Pressure (lb/ft2) in. psi kPa
  
Light  
  building 100 25* 5 0.175 1.2  
Normal 
   building 140 50† 10 0.35 2.4  
Vault  
  building 200 100 20 0.70 4.8  
*Venting sash remains closed. 
†Venting sash designed to open freely.  
 
A.6.1.2  Examples of hazards that are protected by local application systems include 
dip tanks, quench tanks, spray booths, oil-filled electric transformers, vapor vents, 
rolling mills, printing presses, and so forth. 
A.6.1.4  Reference is made to Section 4.3, 4.5.5, and A.4.3 regarding hazards to 
personnel due to obscuration of vision and reduction of oxygen concentration below 
that which will support life, not only in the immediate area of discharge, but in 
adjacent areas to which gas can migrate. 
A.6.3.1  In computing the total quantity of carbon dioxide required for a local 
application system, the flow rates for all nozzles should be added together to obtain 
the mass flow rate for protection of the particular hazard. This rate should be 
multiplied by the discharge time. 
A.6.3.1.1  These cylinders are normally rated in nominal capacities of 50 lb, 75 lb, 
and 100 lb (22.7 kg, 34.1 kg, and 45.4 kg) of carbon dioxide. When the cylinders are 
filled with carbon dioxide at a normal filling density not in excess of 68 percent, a 
portion of the discharge from the cylinders will be as liquid carbon dioxide and the 
remainder will be as vapor. For design purposes, the vapor discharge is considered to 
be ineffective in extinguishing a fire. It has been found that the amount of carbon 
dioxide discharged from the nozzle as liquid carbon dioxide varies from 70 percent to 



75 percent of the total quantity of carbon dioxide contained in the cylinder, and thus it 
is necessary to increase the nominal cylinder capacity for a given system by 40 
percent to account for the vapor portion of the carbon dioxide. For example, a 50 lb 
(22.7 kg) cylinder can be expected to discharge between 35 lb and 37.5 lb (15.9 kg 
and 17.0 kg) of carbon dioxide as liquid that is the part of the discharge that is 
effective in fire extinguishment. 
A.6.3.1.2  When liquid carbon dioxide flows through a warm pipeline, the liquid 
evaporates rapidly until the pipeline is cooled to the saturation temperature of the 
carbon dioxide. The quantity of carbon dioxide liquid evaporated in this manner 
depends on the total amount of heat that should be removed from the pipeline and the 
latent heat of evaporation of the carbon dioxide. For high-pressure carbon dioxide, the 
latent heat of evaporation is about 64 Btu/lb (149 kJ/kg); for low-pressure carbon 
dioxide, the latent heat of evaporation is about 120 Btu/lb (279 kJ/kg). 
The quantity of heat to be removed from the pipeline is the product of the weight of 
the pipeline times the specific heat of the metal times the average temperature change 
of the pipeline. For steel pipe, the average specific heat is about 0.11 Btu/lb°F (0.46 
kJ/kgK) temperature change. The average temperature change will be the difference 
between the temperature at the beginning of the discharge and the average 
temperature of the liquid flowing through the pipe. For high-pressure carbon dioxide, 
the average temperature of the liquid in the pipeline can be assumed to be about 60°F 
(16°C). For low-pressure carbon dioxide, the average temperature can be assumed to 
be about -5°F (-21°C). These temperatures would of course vary somewhat in 
accordance with average nozzle pressures; however, such minor adjustments would 
not substantially affect the results. The following equation can be used to compute the 
quantity of carbon dioxide evaporated in the pipeline: 
 
where: 
W = CO2 evaporated [lb (kg)] 
w = weight of piping [lb (kg)] 
Cp = specific heat of metal in pipe [Btu/lb°F; 0.11 for steel (kJ/kgK; 0.46 for steel)] 
T 1 = average pipe temperature before discharge [°F (°C)] 
T 2 = average CO2 temperature [°F (°C)] 
H = latent heat of evaporation of liquid CO2 [Btu/lb (kJ/kg)] 
A.6.3.3  Because the tests conducted in the listing or approvals of carbon dioxide 
nozzles require that fires be extinguished within a maximum time limit of 20 seconds, 
a minimum duration of 30 seconds has been established for this standard. This extra 
time allows a factor of safety for conditions that can be unpredictable. It is important 
to recognize that this discharge time is a minimum and that conditions such as high 
temperatures and cooling of unusually hot surfaces within the hazard area can require 
an increase in the discharge time to ensure complete and effective extinguishment. 
A.6.3.3.4  The maximum temperature of a burning liquid fuel is limited by its boiling 
point where evaporative cooling matches the heat input. In most liquids the auto-
ignition temperature is far above the boiling temperature, so that re-ignition after 
extinguishment can be caused only by an external ignition source. However, a few 
unique liquids have auto-ignition temperatures that are much lower than their boiling 
temperatures. Common cooking oils and melted paraffin wax have this property. To 
prevent re-ignition in these materials, it is necessary to maintain an extinguishing 
atmosphere until the fuel has cooled below its auto-ignition temperature. A discharge 
time of 3 minutes is adequate for small units, but a longer time could be needed for 
larger-capacity units. 



A.6.4.2.1  In the individual listings or approvals of overhead-type nozzles, tests are 
conducted to determine the optimum design flow rate at which a nozzle should be 
used for the height at which it is installed above a liquid surface. The tests are 
conducted in the following manner:                                                  
(1)  Fire tests of overhead-type nozzles are conducted to develop a curve relating 
maximum flow rates at which a nozzle can be used at various heights. Testing at a 
number of heights establishes a splash curve, which can be plotted as a straight-line 
function of height versus flow rate. In conducting these tests, the flow rates used are 
computed on the basis of high-pressure storage conditions of 70°F (21°C) [average 
pressure 750 psi (5171 kPa)] and low-pressure storage conditions of 0°F (-18°C) [300 
psi (2068 kPa)]. In the case of the high-pressure tests, the fire tests are conducted with 
the cylinders conditioned at a temperature of 120°F (49°C), which gives a flow rate 
somewhat higher than the computed flow rate. 
(2)  Following A.6.4.2.1(1), a minimum flow rate for various heights is assumed at 
a computed flow rate that is 75 percent of the maximum flow rate previously 
established. Again, a straight-line curve can be plotted of flow rate versus height. 
(3)  Following A.6.4.2.1(2), tests are conducted in which the area of the fire is 
varied to determine the maximum area that can be extinguished by a particular nozzle 
at various heights when applied at a flow rate equal to 75 percent of the maximum 
flow rate. In conducting these tests for high-pressure storage cylinders, the flow rates 
for the various fires are computed on the basis of 70°F (21°C) storage temperature 
[750 psi (5171 kPa)], and the test cylinders are conditioned to a temperature of 32°F 
(0°C). 
(4)  From the data from A.6.4.2.1(1) through A.6.4.2.1(3), two curves are plotted. 
The first is a flow rate versus height curve, and the second is an area versus height 
curve. The final plot of the flow rate versus height curve shows a single curve 
established at a flow rate that is 90 percent of the maximum flow rate. It is then 
possible to utilize this nozzle for various heights at the design flow rate indicated by 
this curve or at flow rates slightly above or below this curve to allow for differences 
between computed and actual rates. Typical curves are shown in Figure D.1(a) and 
Figure D.1(b).                                                
Because these curves are developed on the basis of fire tests utilizing square pans, it is 
important to remember that the area coverage for nozzles at various heights shown by 
the second curve should be on the basis of approximate square areas. It is also 
important to remember that these two curves represent the limitations of single-nozzle 
coverage. 
In multiple-nozzle systems, these limitations are used for the portion of a hazard 
covered by each individual nozzle. 
A.6.4.2.2  For tankside and linear nozzles, fire tests are conducted to develop curves 
relating the maximum and minimum flow rates at which a nozzle can be used to the 
area of fire that the nozzle is capable of extinguishing, with additional limitations 
regarding maximum width of hazard and spacing requirements between nozzles and 
to the nearest corner of a hazard. In these tests, the nozzles are normally installed at a 
distance of 6 in. (152 mm) above the liquid surface, thereby eliminating the parameter 
of height. These tests are conducted in the following manner. 
Single or multiple nozzles are mounted on the edge of square or rectangular pans. In 
the multiple-nozzle tests, nozzles are mounted on one side or on two opposing sides. 
Tests are conducted on a number of pan sizes with various spacing arrangements to 
establish a maximum rate or splash curve, which can be plotted as a function of flow 
rate versus area covered or hazard width. Following this step, the minimum flow rate 



for various area or hazard width conditions (with other appropriate spacing 
limitations) is determined by a similar series of tests. 
For all of these tests, the flow rates are calculated on the basis of 0°F (-18°C) storage 
temperature for low-pressure systems [average pressure 300 psi (2068 kPa)] or 70°F 
(21°C) storage temperature for high-pressure systems [average pressure 750 psi (5171 
kPa)]. In high-pressure systems, the actual storage temperature can vary between 
120°F (49°C) and 32°F (0°C). For this reason, the maximum rate or splash rate tests 
are conducted using storage cylinders conditioned to 120°F (49°C), which gives a 
flow rate somewhat higher than the computed rate. The minimum rate tests are 
conducted using storage cylinders conditioned to 32°F (0°C), which gives a flow rate 
somewhat lower than the computed rate. 
From the data developed from these tests, a plot of flow rate versus area coverage or 
hazard width is made with the maximum or splash curve reduced by a factor of 10 
percent and the minimum rate increased by a factor of 15 percent. A typical curve for 
a tankside nozzle is shown by Figure F.1(c), and a curve for a linear nozzle is shown 
by Figure F.1(d). 
A.6.4.3.4  For listing and approval testing, overhead local application carbon dioxide 
nozzles are tested on two-dimensional pan fires. (See A.6.4.2.1.) Some nozzles have 
excellent area of coverage when used on such “flat” fires. Although the actual cone of 
discharge can directly impinge on only a small area of the fire, the carbon dioxide can 
flow away from the actual area of impact and effectively cover a much larger area of 
the fire pan. 
If the surface on which the carbon dioxide discharge impinges is very irregular, it is 
possible that the nozzle discharge could not effectively cover all parts of the hazard. If 
the nozzles being used have small areas of impact compared to their listed areas of 
coverage, additional nozzles could be necessary to completely cover irregularly 
shaped objects. Where such irregularly shaped hazards are to be covered, the designer 
should be certain that the number, type, and location of nozzles are sufficient to 
ensure complete coverage of the hazard surfaces. Verifying the coverage of local 
application nozzles is an important part of the discharge test. 
A.6.4.4.5  Additional nozzles can be required for this specific purpose, particularly if 
stock extends more than 2 ft (0.6 m) above a protected surface. 
A.6.5.3.2  Figure A.6.5.3.2 is a graph of the partial enclosure. 
 
FIGURE A.6.5.3.2  Partial Enclosure Flow Rate Reduction per 6.5.3.2. 
A.6.6.2  High-pressure storage temperatures ranging from 32°F to 120°F (0°C to 
49°C) do not require special methods of compensating for changing flow rates. 
Where high-pressure storage temperatures can fall below 32°F (0°C) or rise above 
120°F (49°C), it could be necessary to incorporate special features in the system to 
ensure proper flow rates. 
A.7.1.1  A separate carbon dioxide supply can be provided for hand hose line use, or 
carbon dioxide can be piped from a central storage unit supplying several hose lines 
or from fixed manual or automatic systems. (See 4.6.1.1.) 
A.7.1.4  Reference is made to 4.3.1 and A.4.3 regarding hazards to personnel due to 
obscuration of vision and reduction of oxygen concentration below that which will 
support life, not only in the immediate area of discharge but in adjacent areas to which 
gas can migrate. 
A.7.5.2  The attachment of the discharge nozzle assembly to the hose by means of a 
swivel connection is desirable for providing more ease of manipulation. 



A.7.5.4  Operation of hand hose line systems depends upon manual actuation and 
manual manipulation of a discharge nozzle. Speed and simplicity of operation are 
therefore essential for successful extinguishment. 
A.7.5.4.2  Bleeder valves or similar devices can be utilized to reduce delay in 
obtaining liquid discharge on low-pressure systems. 
A.8.1.1  The carbon dioxide supply is mounted on a mobile vehicle that can be towed 
or driven to the scene of a fire and quickly coupled to the standpipe system protecting 
the involved hazard. Mobile supply is primarily fire brigade or fire department 
equipment requiring trained personnel for effective use. 
A.8.1.2  Standpipe systems and mobile supply can be used to supplement complete 
fixed fire protection systems or can be used alone for the protection of the specific 
hazards as follows:                                                  
(1)  Mobile supply can be used as a reserve to supplement a fixed supply. 
(2)  Mobile supply can also be outfitted with hand hose lines for the protection of 
scattered hazards.                                                
A.8.4.1  Extra quantities could be required to compensate for delay in getting the 
mobile supply to the hazard. 
A.8.5  The effectiveness of fire protection provided by standpipe systems and mobile 
supply depends on the efficiency and ability of the manpower that handles the mobile 
supply. Generally, this equipment is in the category of fire brigade or fire department 
equipment requiring a regularly assigned crew. 
A.9.1(2)(c)  Examples include spaces containing engines used for propulsion, engines 
that drive electrical generators, oil filling stations, cargo pumps, or heating, 
ventilation, and air-conditioning machinery. 
A.9.1(2)(d)  Carbon dioxide systems are not recommended for vehicle spaces that are 
accessible to passengers. 
A.9.2.1  It is intended that NFPA 12, Standard on Carbon Dioxide Extinguishing 
Systems, including this chapter, would be used as a stand-alone document for the 
design, installation, and maintenance of marine carbon dioxide systems. Chapter 9 
was added in 1999 to address marine installations. It was intended to be used in lieu 
of other standards such as 46 CFR 119, “Machinery Installations.” 
A.9.3.3.2  Except for very small protected spaces noted in 9.3.3.1.3, it is the intent of 
this standard to require two separate manual operations to cause discharge of a marine 
system. Provision of a separate manually actuated control for each of the discharge 
control valves required by 9.3.3.1 accomplishes this intent. This requirement is an 
exception to the “normal manual operation” as defined in 4.5.1.2. 
A.9.3.3.3  For a high-pressure carbon dioxide system, the emergency manual control 
for the supply is the manual operator on the pilot cylinder(s). 
A.9.3.3.5  Sufficient carbon dioxide should be provided to power the alarms at their 
rated pressure for the required time. 
A.9.3.5.1  An example of where drains would be necessary would be low points in 
carbon dioxide piping, which are also used by a sampling-type smoke detection 
system. 
Fires in cargo spaces may not be completely extinguished by the carbon dioxide 
discharge. Whether the fire is completely extinguished or only suppressed depends on 
a number of factors, including the type and quantity of burning material. Some 
leakage of carbon dioxide–enriched atmosphere from the cargo hold is likely. 
Therefore, additional carbon dioxide may need to be discharged on an intermittent 
basis to maintain fire suppression in the cargo hold until the vessel reaches port. Once 



at port, before the cargo hold is opened, properly equipped and trained fire brigade 
should be standing by to effect complete extinguishment of the burning material. 
Annex B Examples of Hazard Protection 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
B.1  
The following annex material is provided to show typical examples of how various 
fire hazards can be protected with fixed carbon dioxide extinguishing systems. It 
should be noted that the methods described are not to be construed as being the only 
ones that can be used. They are meant to help only in interpreting and elaborating on 
the intent of the standard where proper application could be subject to question. 
B.2 Commercial/Industrial Food Processing Deep-Fat (Hot Oil) Cookers. 
Large deep-fat fryers that are used to continuously cook food products such as meat, 
fish, snacks, and so forth, present a fire hazard that requires special attention when 
designing a carbon dioxide extinguishing system to protect them. 
If cooking oil is overheated, it will reach its auto-ignition temperature before it boils 
away. Therefore, a fire that involves cooking oil vapors can be re-ignited after the 
initial carbon dioxide discharge by the high temperature of the hot oil in the cooking 
vat, unless the oil is cooled below the ignition temperature. The energy-efficient 
design of modern cooking vats makes cooling a slow process. 
The arrangement of the equipment to be protected is of prime consideration to proper 
system design. 
First of all, using the cooker can involve external heating of the oil with recirculation 
of the oil through the cooking vat. This can be considered interexposure. (See 6.2.1.) 
Second, some cookers are designed such that the fume hood and conveyor can be 
raised and lowered by a hydraulic system. The combustible food-compatible 
hydraulic fluids used present another area of protection and can be considered 
interexposed. (See 6.2.1.) 
Third, there is a concern that a high-production operation will have an exhaust system 
that can involve a fume-removal system. This concern should be considered part of 
the hazard. (See 6.2.1.) 
The drain board, when subject to oil drippage at the exit end of the conveyor, should 
be covered. (See 6.2.1.) 
Finally, the vat presents the largest area to be protected and the greatest need for 
adequate cooling. 
B.2.1 Summary of Protection. The following is a quick reference of protection criteria 
for system design. 
B.2.1.1 Vat. Where the vat has a movable hood, fire protection by total flooding under 
the hood is not permitted by 5.1.2 unless the following criteria are met:                                                  
(1)  The hood should not be raised during the cooking operation, which means the 
following:                                                  
(a)  The source of power or fuel to the heating elements is automatically shut off 
when the hood is raised (e.g., for maintenance or cleaning). 
(b)  A mechanical high-temperature limit switch is employed that will operate any 
time the temperature of the oil is above the preset temperature limit of not more than 
20 percent, in degrees Fahrenheit (degrees Celsius), above the maximum normal oil 
operating temperature in degrees Fahrenheit (degrees Celsius). Its operation shall 
cause the following:                                                  
i.  Shutoff of power to the oil heater system 
ii.  Prevention of raising electrically operated hoods 



iii.  Actuation of audible and visual alarms to caution against raising the hood 
manually 
(c)  The switch should have an automatic reset temperature not higher than 60°F 
(33.3°C) below the auto-ignition temperature of the cooking oil. 
(2)  Before the hood can be raised (e.g., for maintenance and cleaning), a 
supervised lock-out valve should be closed to prevent the discharge of the carbon 
dioxide system. Closing of the lock-out valve should actuate the supervisory trouble 
alarm on the control unit. 
(3)  The source of power or fuel to the heating elements is automatically shut off 
prior to or simultaneously with the system discharge. 
(4)  The quantity of carbon dioxide and the duration of discharge are sufficient to 
maintain an inert atmosphere in the vat until the temperature of the cooking oil is 
lowered to prevent re-ignition per 5.3.5.6. A minimum reduction of 60°F (33.3°C) 
below the auto-ignition temperature is recommended. 
(5)  The system design is based on discharge testing for the specific fryer model to 
show compliance with B.2.1.1(4). Documentation of the test should be available upon 
request by the authority having jurisdiction or the end user. 
(6)  Thermal detection should actuate the carbon dioxide system when the 
temperature is at or below the auto-ignition temperature of the cooking oil.                                               
B.2.1.2 Permanent Enclosure. Local application should be designed with the hood in 
the full up position. 
B.2.1.3 Drain Board. A local application system using the rate-by-area method per 
Section 6.4 is appropriate. 
B.2.1.4 Fume-Exhaust and Fume-Removal System. Total flooding designed to a 65 
percent concentration per 5.4.2.1 is appropriate. 
B.2.1.5 External Oil Heater. A local application system for the recirculating 
equipment and filters using the rate-by-area method (see Section 6.4) or rate-by-
volume method (see Section 6.5 ), depending on the equipment configuration, is 
appropriate. 
B.2.1.6 Hydraulic Oil System. A local application system using the rate-by-area 
method (see Section 6.4) or rate-by-volume method (see Section 6.5 ), depending on 
the equipment configuration, is appropriate. 
Because the vat requires a minimum of a 3-minute liquid discharge (see 6.3.3.4.1), the 
carbon dioxide system design can incorporate two discharge piping systems, one for 
the vat and one for the remaining interexposed hazards. 
B.2.1.7 Equipment Shutdown. (See also 4.5.4.8.) Consideration should also be given 
to personal safety (see Section 4.3) when the system is being designed. 
B.3 Restaurant Range Hoods, Connected Ducts, and Associated Hazards. 
The protection of kitchen range hoods and ducts is accomplished with a combination 
of total flooding and local application systems. The duct or vent stack and the plenum 
area above the filters can be protected by total flooding. The undersurface of the 
filters and any special hazards such as deep-fat fryers can be protected by local 
application. It could be necessary to extend local application protection to coated 
underhood surfaces and range surfaces if there is danger of grease accumulation or 
runoff from the hood or duct under fire conditions. 
In protecting the duct with the recommended flooding factor of 1 lb/8 ft3 (2 kg/m3) of 
duct volume, a damper is considered essential at either the top or the bottom, with 
provisions for automatic closing at the beginning of the discharge of carbon dioxide. 
For ducts that rise to heights greater than 20 ft (6.1 m) or horizontal runs greater than 
50 ft (15.3 m), the gas is introduced at intermediate points to ensure proper 



distribution. With a damper at the top of the stack, a nozzle should be installed 
immediately below, with additional nozzles installed above if the duct run extends 
beyond the damper. A nozzle is normally required in the plenum area. 
Nozzles are to be provided to cover the underside of the filters and to discharge for 30 
seconds at the coated surface rate specified in 6.4.3.5. In lieu of that, the quantity of 
carbon dioxide required and application rates can be determined using special nozzles 
or methods as could be approved or listed for this purpose. If the underside of the 
hood is largely enclosed by a baffle or drip pan, protection can be by total flooding 
using a factor of 1 lb/8 ft3 (2 kg/m3) and compensating for open peripheral area. (See 
5.3.5.) 
Quantities for the protection of deep-fat fryers or other specific fire hazards, or both, 
below the hood are to be in addition to the preceding requirements. All hazards 
venting through a common duct should be protected simultaneously. 
Automatic fire detection and actuation of the system are required for concealed spaces 
above the filter and in the duct system. Detectors should also be provided below 
filters over any deep-fat cookers. 
Visual fire detection and manual actuation (see 4.5.4.4) can be acceptable for exposed 
portions of the hazard; however, actuation by either automatic or manual means 
should discharge the complete system. Special attention should be given to the choice 
of heat detectors, considering normal operating temperature level and temperature rise 
conditions of the range equipment. 
Actuation of the system should automatically close dampers, shut off forced 
ventilating fans, and shut off the master fuel valve or power switch to all cooking 
equipment associated with the hood. These devices should be of the type that requires 
manual resetting. (See 4.5.4.8.) 
In addition to normal system maintenance, particular care should be given to keeping 
heat detectors and discharge nozzles clean of grease accumulation. Generally, nozzle 
seals or caps are required to keep nozzle orifices free of obstruction. 
For additional information, see NFPA 96, Standard for Ventilation Control and Fire 
Protection of Commercial Cooking Operations. 
B.4 Newspaper Printing and Rotogravure Presses. 
Newspaper, rotogravure, and similar presses constitute a substantial hazard due to the 
use of highly flammable solvents in the inks, presence of ink-saturated shredded paper 
or dust, lubricants, and so forth. In addition to the press units, there can be exhaust 
ducts, ink-mixing equipment, and associated electrical hazards that require protection. 
Rotogravure presses use more flammable inks than newspaper printing presses and 
are equipped with heated drying drums or other drying means and constitute a more 
severe hazard. However, the basic protection method for both rotogravure and 
newspaper presses is the same. 
Presses are usually arranged in rows (lines) with folders interspersed. The paper can 
move through the press units to the folder from either side of the folder. Static 
electrical sparks are a common source of ignition. Flame spread can be from the press 
units to the folder or from the folder toward the press units. 
Presses are “open” or “closed,” depending on whether mist guards or covers are used. 
With open-type presses, an exhaust system to remove the ink mist is usually required 
in the press arrangement, and this exhaust system requires simultaneous protection. 
Press rooms can be protected by total flooding systems; however, local application–
type systems are generally used. Although the press lines and individual press units 
constitute a series of interexposed hazards, subdividing by lines or suitable grouping 



within lines is the usual practice for economic reasons. Ventilation ducts, ink storage 
rooms, and control rooms are usually handled by total flooding methods. 
Entire press lines can be protected by local application methods. A press line can be 
subdivided into groups. In all cases, systems should be capable of giving simultaneous 
and independent automatic protection to adjacent groups of other lines and also to in-
line groups to which the fire can spread. Protection should be designed so that, if a 
fire occurs near the junction of adjoining groups, the systems protecting both groups 
will discharge simultaneously. 
On individual press groups, the rate of carbon dioxide application can be based on 
either the rate-by-area or the rate-by-volume method. (See Sections 6.4 and 6.5.) 
If the rate-by-area method is used for the presses, the area is based on the full length 
of the rolls, including the end frames, and on the full height of the roll stack, including 
the ink reservoir. Both sides of the roll stacks should be included. Color decks should 
be similarly calculated. Where outside ink reservoirs are used, protection is based on 
the horizontal area of the reservoir. The floor area under the press should also be 
protected. On rotogravure presses, the dryers and connecting ductwork are protected 
by flooding at 1 lb/8 ft3 (2 kg/m3) to be discharged in 30 seconds. When using the 
rate-by-area method to determine the amount of carbon dioxide required for folders, 
carbon dioxide should be applied from both the drive side and the operating side at 
two levels. Each nozzle will cover an area 4 ft (1.2 m) wide by 4 ft (1.2 m) high. 
When the rate-by-volume method is used, the entire group of presses to be protected 
as a section can be considered as one volume. It is not necessary to add 2 ft (0.6 m) to 
the sides of each press when the frame constitutes a natural barrier. A single folder 
can be included in this volume; however, a double-deck folder requires an additional 
volume block to include the upper deck. 
Nozzles should be located to cover the coated surfaces; however, exact placement 
according to listings or approvals might not be possible. Nozzles should be located to 
discharge from both ends of the press rolls so as to retain the carbon dioxide within 
the press volume. The same applies to folders. Protection should be arranged so as to 
be effective when the mist guards are in place or removed. 
The quantity of carbon dioxide required for a single group is based on discharging at 
the calculated rate for 30 seconds. The reserve supply should be at least sufficient to 
protect all the adjacent groups that could become involved, including a reserve for the 
group in which the fire originates. In high-pressure systems, a single reserve bank can 
be used as a reserve for several main banks; however, the main bank for one group 
cannot be used as the reserve for another group unless specifically approved by the 
authority having jurisdiction. 
All systems should be arranged for automatic actuation with means for auxiliary 
manual actuation. At least one heat detector should be located in or over each press 
unit and folder, depending on the design of the particular unit. 
Because of the inherent vibration associated with presses, particular attention should 
be given to mounting means so as to eliminate vibration damage to tubing or wiring 
of the detection system. 
Immediate detection is particularly important in group protection to prevent the 
spread of fire beyond the group affected. Because of the need for rapid detection to 
prevent fire from spreading to adjacent groups or operation of adjacent detectors, or 
both, the detection system should utilize rate-of-rise, rate-compensated, or equivalent 
fast-acting detectors. 
Complete shutdown of presses, ventilation, pumps, and heat sources simultaneous 
with system operation is essential. 



Audible alarms in the press room and in any basements, pits, or lower levels where 
carbon dioxide can flow should sound simultaneously with operation of the system. 
(See A.4.3.) 
In addition to normal system maintenance, particular care should be given to ensuring 
continuance of proper nozzle location and alignment during normal press maintenance 
procedures. Special attention should also be given to effects of press vibration on heat 
actuators and connecting tubing or wiring. 
B.5 Open-Top Pits. 
Open pits up to 4 ft (1.2 m) deep or up to a depth equal to one-quarter the width, 
whichever is greater, should be protected on the basis of local application. The area to 
be considered in determining the quantity of carbon dioxide is the total floor area of 
the pit less any area covered by a simultaneously protected tank or other equipment 
for which the quantity is separately calculated. Nozzles are located so as to provide 
coverage of the protected area in accordance with listing or approval data. It could 
thus be necessary to locate additional nozzles in the center of the pit. 
Open pits that exceed 4 ft (1.2 m) in depth or a depth equal to one-quarter the width, 
whichever is greater, can be protected on an area basis using a discharge rate of 4 
lb/minft2 (19.5 kg/minm2) of floor area and a discharge time of 30 seconds. The 
nozzles can be located around the sides of the pit so as to apply the carbon dioxide 
uniformly from all sides. Care should be taken to use the appropriate number of 
nozzles that have sufficient projection so as to reach the center areas of large pits. 
Alternately, it could be preferable to locate some of the nozzles so as to discharge 
directly on equipment in the pit requiring protection, such as pumps, motors, or other 
critical items. Open-top dip tanks should be protected separately by local application, 
particularly where the liquid surface is less than 4 ft (1.2 m) or one-quarter the width 
of the pit from the open top of the pit. Areas of such tanks separately protected wholly 
within the pit can be deducted from the area of the pit. Objects extending above the 
top of the pit should be protected using the surface area or the assumed enclosure 
methods. 
If the top of the pit is partially covered so that the open area is less than 3 percent of 
the cubic foot volume expressed in square feet, the quantity of carbon dioxide 
required can be determined on a total flooding basis, using an additional quantity of 
gas for leakage compensation equal to 1 lb/ft2 (5 kg/m2) of open area. 
For pits exceeding the minimum specified depth limitation, the discharge nozzles 
should be located at the two-thirds level above the floor, providing that the discharge 
rate versus distance factor is not exceeded, so that there will be no danger of splashing 
any liquids that could be present. In any case, it is preferable to keep the nozzles 
below the open top to minimize the entrainment of air down into the pit. If the pit 
exceeds 20 ft (6.1 m) in depth, it is desirable to locate the nozzles somewhat above the 
two-thirds level from the floor to ensure adequate mixing in the pit. When the 
quantity of carbon dioxide is computed on the basis of normal total flooding 
techniques, the nozzle should have sufficient velocity and turbulence effects to 
completely fill the pit volume with a thoroughly mixed atmosphere of carbon dioxide 
and air. 
B.6 Below Raised Floors. 
The use of total flooding carbon dioxide fire suppression systems for protection of 
underfloors typically found in computer rooms and similar types of electronic 
facilities has been a common practice for several decades. 
Experience has shown that there is a potential problem of excessive leakage 
associated with underfloor protection that can be attributed to a combination of 



perforated floor tiles and discharge turbulence. Therefore, it is important to design the 
system to compensate for leakage and to provide a soft discharge to minimize 
turbulence. Consult the system manufacturer for detailed guidance. 
Carbon dioxide, being heavier than air, tends to remain trapped and could pose a 
hazard to personnel entering the underfloor to perform after-fire repairs. After a 
system discharge, it will be necessary to completely exhaust the carbon dioxide gas 
from the underfloor after the fire has been extinguished. 
In addition, if any service or maintenance is conducted in the underfloor, the carbon 
dioxide system should be locked out to prevent discharge. 
Annex C Pipe and Orifice Size Determination 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
C.1  
The problem of computing pipe sizes for carbon dioxide systems is complicated by 
the fact that the pressure drop is nonlinear with respect to the pipeline. Carbon dioxide 
leaves the storage vessel as a liquid at saturation pressure. As the pressure drops 
because of pipeline friction, the liquid boils so as to produce a mixture of liquid and 
vapor. Because of this, the volume of the flowing mixture increases and the velocity 
of flow must also increase. Thus, the pressure drop per unit length of pipe is greater 
near the end of the pipeline than it is at the beginning. 
Pressure drop information for designing piping systems can best be obtained from 
curves of pressure versus equivalent length for various flow rates and pipe sizes. Such 
curves can be plotted using the theoretical equation given in 4.7.5.1. The Y and Z 
factors in the equation in 4.7.5.1 depend on storage pressure and line pressure. In the 
following equations, Z is a dimensionless ratio, and the Y factor has units of pressure 
times density and will therefore change the system of units. The Y and Z factors can 
be evaluated as follows: 
 
where: 
P = pressure at end of pipeline [psi (kPa)] 
P 1 = storage pressure [psi (kPa)] 
 = density at pressure P [lb/ft3 (kg/m3)] 
1 = density at pressure P1 [lb/ft3 (kg/m3)] 
 ln = natural logarithm 
The storage pressure is an important factor in carbon dioxide flow. In low-pressure 
storage, the starting pressure in the storage vessel will recede to a lower level 
depending on whether all or only a part of the supply is discharged. Because of this, 
the average pressure during discharge will be about 285 psi (1965 kPa). The flow 
equation is based on absolute pressure; therefore, 300 psi (2068 kPa) is used for 
calculations involving low-pressure systems. 
In high-pressure systems, the storage pressure depends on the ambient temperature. 
Normal ambient temperature is assumed to be 70°F (21°C). For this condition, the 
average pressure in the cylinder during discharge of the liquid portion will be about 
750 psi (5171 kPa). This pressure has therefore been selected for calculations 
involving high-pressure systems. 
Using the base pressures of 300 psi (2068 kPa) and 750 psi (5171 kPa), values have 
been determined for the Y and Z factors in the flow equation. These are listed in 
Table C.1(a) and Table C.1(b). 
 
Table C.1(a)  Values of Y and Z for 300 psi Initial Storage Pressure  



  Y  
Pressure   
(psi) Z 0 1 2 3 4 5 6 7 8 9
  
300 0.000 0 0 0 0 0 0 0 0 0 0
  
290 0.135 596 540 483 426 367 308 248 187 126 63
  
280 0.264 1119 1070 1020 969 918 866 814 760 706 652
  
270 0.387 1580 1536 1492 1448 1402 1357 1310 1263 1216
 1168  
260 0.505 1989 1950 1911 1871 1831 1790 1749 1708 1666
 1623  
250 0.620 2352 2318 2283 2248 2212 2176 2139 2102 2065
 2027  
240 0.732 2677 2646 2615 2583 2552 2519 2487 2454 2420
 2386  
230 0.841 2968 2940 2912 2884 2855 2826 2797 2768 2738
 2708  
220 0.950 3228 3204 3179 3153 3128 3102 3075 3049 3022
 2995  
210 1.057 3462 3440 3418 3395 3372 3349 3325 3301 3277
 3253  
200 1.165 3673 3653 3632 3612 3591 3570 3549 3528 3506
 3485  
190 1.274 3861 3843 3825 3807 3788 3769 3750 3731 3712
 3692  
180 1.384 4030 4014 3998 3981 3965 3948 3931 3914 3896
 3879  
170 1.497 4181 4167 4152 4138 4123 4108 4093 4077 4062
 4046  
160 1.612 4316 4303 4291 4277 4264 4251 4237 4223 4210
 4196  
150 1.731 4436 4425 4413 4402 4390 4378 4366 4354 4351
 4329  
 
 
Table C.1(b)  Values of Y and Z for 750 psi Initial Storage Pressure  
   Y  
 Pressure 
(psi) Z 0 1 2 3 4 5 6 7 8 9
  
750 0.000 0 0 0 0 0 0 0 0 0 0
  
740 0.038 497 448 399 350 300 251 201 151 101 51
  
730 0.075 975 928 881 833 786 738 690 642 594 545
  



720 0.110 1436 1391 1345 1299 1254 1208 1161 1115 1068
 1022  
710 0.143 1882 1838 1794 1750 1706 1661 1616 1572 1527
 1481  
700 0.174 2314 2271 2229 2186 2143 2100 2057 2013 1970
 1926  
690 0.205 2733 2691 2650 2608 2567 2525 2483 2441 2399
 2357  
680 0.235 3139 3099 3059 3018 2978 2937 2897 2856 2815
 2774  
670 0.265 3533 3494 3455 3416 3377 3338 3298 3259 3219
 3179  
660 0.296 3916 3878 3840 3802 3764 3726 3688 3649 3611
 3572  
650 0.327 4286 4250 4213 4176 4139 4102 4065 4028 3991
 3953  
640 0.360 4645 4610 4575 4539 4503 4467 4431 4395 4359
 4323  
630 0.393 4993 4959 4924 4890 4855 4821 4786 4751 4716
 4681  
620 0.427 5329 5296 5263 5229 5196 5162 5129 5095 5061
 5027  
610 0.462 5653 5621 5589 5557 5525 5493 5460 5427 5395
 5362  
600 0.498 5967 5936 5905 5874 5843 5811 5780 5749 5717
 5685  
590 0.535 6268 6239 6209 5179 6149 6119 6089 6058 6028
 5997  
580 0.572 6560 6531 6502 6473 6444 6415 6386 6357 6328
 6298  
570 0.609 6840 6812 6785 6757 6729 6701 6673 6645 6616
 6588  
560 0.646 7110 7084 7057 7030 7003 6976 6949 6922 6895
 6868  
550 0.683 7371 7345 7320 7294 7268 7242 7216 7190 7163
 7137  
540 0.719 7622 7597 7572 7548 7523 7498 7472 7447 7422
 7396  
530 0.756 7864 7840 7816 7792 7768 7744 7720 7696 7671
 7647  
520 0.792 8098 8075 8052 8028 8005 7982 7958 7935 7911
 7888  
510 0.827 8323 8301 8278 8256 8234 8211 8189 8166 8143
 8120  
500 0.893 8540 8519 8497 8476 8454 8433 8411 8389 8367
 8345  
490 0.898 8750 8730 8709 8688 8667 8646 8625 8604 8583
 8562  
480 0.933 8953 8933 8913 8893 8873 8852 8832 8812 8791
 8771  



470 0.967 9149 9129 9110 9091 9071 9052 9032 9012 8993
 8973  
460 1.002 9338 9319 9301 9282 9263 9244 9225 9206 9187
 9168  
450 1.038 9520 9502 9484 9466 9448 9430 9412 9393 9375
 9356  
440 1.073 9697 9697 9662 9644 9627 9609 9592 9574 9556
 9538  
430 1.109 9866 9850 9833 9816 9799 9782 9765 9748 9731
 9714  
420 1.146 10030 10014 9998 9982 9966 9949 9933 9916 9900
 9883  
410 1.184 10188 10173 10157 10141 10126 10110 10094 10078 10062
 10046  
400 1.222 10340 10325 10310 10295 10280 10265 10250 10234 10219
 10204  
390 1.262 10486 10472 10458 10443 10429 10414 10399 10385 10370
 10355  
380 1.302 10627 10613 10599 10585 10571 10557 10543 10529 10515
 10501  
370 1.344 10762 10749 10735 10722 10708 10695 10681 10668 10654
 10641  
360 1.386 10891 10878 10866 10853 10840 10827 10814 10801 10788
 10775  
350 1.429 11015 11003 10991 10978 10966 10954 10941 10929 10916
 10904  
340 1.473 11134 11122 11110 11099 11087 11075 11063 11051 11039
 11027  
330 1.518 11247 11236 11225 11214 11202 11191 11180 11168 11157
 11145  
320 1.564 11356 11345 11334 11323 11313 11302 11291 11280 11269
 11258  
310 1.610 11459 11449 11439 11428 11418 11408 11398 11387 11377
 11366  
300 1.657 11558 11548 11539 11529 11519 11509 11499 11489 11469
 11469  
 
For practical application, it is desirable to plot curves for each pipe size that can be 
used. However, the flow equation can be rearranged as shown in the following 
equation: 
 
Thus, by plotting values of L/D1.25 and Q/D2, it is possible to use one family of 
curves for any pipe size. Figure C.1(a) gives flow information for 0°F (-18°C) storage 
temperature on this basis. Figure C.1(b) gives similar information for high-pressure 
storage at 70°F (21°C). For an inside pipe diameter of exactly 1 in., D2 and D1.25 
reduce to unity and cancel out. For other pipe sizes, it is necessary to convert the flow 
rate and equivalent length by dividing or multiplying by these factors. Table C.1(c) 
gives values for D. 
 
FIGURE C.1(a)  Pressure Drop in Pipeline for 300 psi (2068 kPa) Storage Pressure. 



 
FIGURE C.1(b)  Pressure Drop in Pipeline for 750 psi (5171 kPa) Storage Pressure. 
 
Table C.1(c)  Values of D1.25 and D2 for Various Pipe Sizes  
Pipe Size   
and Type Inside Diameter (in.) D1.25 D2  
½ Std. 0.622 0.5521 0.3869  
¼ Std. 0.824 0.785 0.679  
1 Std. 1.049 1.0615 1.100  
1 XH 0.957 0.9465 0.9158  
1¼ Std. 1.380 1.496 1.904  
1¼ XH 1.278 1.359 1.633  
1½ Std. 1.610 1.813 2.592  
1½ XH 1.500 1.660 2.250  
2 Std. 2.067 2.475 4.272  
2 XH 1.939 2.288 3.760  
2½ Std. 2.469 3.09 6.096  
2½ XH 2.323 2.865 5.396  
3 Std. 3.068 4.06 9.413  
3 XH 2.900 3.79 8.410  
4 Std. 4.026 5.71 16.21  
4 XH 3.826 5.34 14.64  
5 Std. 5.047 7.54 25.47  
5 XH 4.813 7.14 23.16  
6 Std. 6.065 9.50 36.78  
6 XH 5.761 8.92 33.19  
 
These curves can be used for designing systems or for checking possible flow rates. 
For example, assume the problem is to determine the terminal pressure for a low-
pressure system consisting of a single 2 in. Schedule 40 pipeline with an equivalent 
length of 500 ft and a flow rate of 1000 lb/min. The flow rate and the equivalent 
length must be converted to terms of Figure C.1(a) as follows: 
 
From Figure C.1(a), the terminal pressure is found to be about 228 psi at the point 
where the interpolated flow rate of 234 lb/min intersects the equivalent length scale at 
201 ft. 
If this line terminates in a single nozzle, the equivalent orifice area must be matched 
to the terminal pressure in order to control the flow rate at the desired level of 1000 
lb/min. Referring to Table 4.7.5.2.1, it will be noted that the discharge rate will be 
1410 lb/minin.2 of equivalent orifice area when the orifice pressure is 230 psi. The 
required equivalent orifice area of the nozzle is thus equal to the total flow rate 
divided by the rate per square inch as shown in the following equation. 
 
From a practical viewpoint, the designer would select a standard nozzle having an 
equivalent area nearest to the computed area. If the orifice area happened to be a little 
larger, the actual flow rate would be slightly higher and the terminal pressure would 
be somewhat lower than the estimated 228 psi (1572 kPa). 
If, in the previous example, instead of terminating with one large nozzle, the pipeline 
branched into two smaller pipelines, it would be necessary to determine the pressure 
at the end of each branch line. To illustrate this procedure, assume that the branch 



lines are equal and consist of 1½ in. Schedule 40 pipe with equivalent lengths of 200 
ft (61 m) and the flow in each branch line is to be 500 lb/min (227 kg/min). 
Converting to terms used in Figure C.1(a), the following equations result: 
 
From Figure C.1(a), the starting pressure of 228 psi (1572 kPa) (terminal pressure of 
main line) intersects the flow rate line [193 lb/min (87.6 kg/min)] at an equivalent 
length of about 300 ft (91.4 m). In other words, if the branch line started at the storage 
vessel, the liquid carbon dioxide would have to flow through 300 ft (91.4 m) of 
pipeline before the pressure dropped to 228 psi (1572 kPa). This length thus becomes 
the starting point for the equivalent length of the branch line. The terminal pressure of 
the branch line is then found to be 165 psi (1138 kPa) at the point where the 193 
lb/min (87.6 kg/min) flow rate line intersects the total equivalent length line of 410 ft 
(125 m), or 300 ft + 110 ft (91 m + 34 m). With this new terminal pressure [165 psi 
(1138 kPa)] and flow rate [500 lb/min (227 kg/min)], the required equivalent nozzle 
area at the end of each branch line will be approximately 0.567 in.2 (366 mm2). This 
is about the same as the single large nozzle example, except that the discharge rate is 
cut in half due to the reduced pressure. 
The design of the piping distribution system is based on the flow rate desired at each 
nozzle. This in turn determines the required flow rate in the branch lines and the main 
pipeline. From practical experience, it is possible to estimate the approximate pipe 
sizes required. The pressure at each nozzle can be determined from suitable flow 
curves. The nozzle orifice sizes are then selected on the basis of nozzle pressure from 
the data given in 4.7.5.2. 
In high-pressure systems, the main header is supplied by a number of separate 
cylinders. The total flow is thus divided by the number of cylinders to obtain the flow 
rate from each cylinder. The flow capacity of the cylinder valve and the connector to 
the header vary with each manufacturer, depending on design and size. For any 
particular valve, dip tube, and connector assembly, the equivalent length can be 
determined in terms of feet of standard pipe size. With this information, the flow 
equation can be used to prepare a curve of flow rate versus pressure drop. This curve 
provides a convenient method of determining header pressure for a specific valve and 
connector combination. 
Table C.1(d) and Table C.1(e) list the equivalent lengths of pipe fittings for 
determining the equivalent length of piping systems. Table C.1(d) is for threaded 
joints, and Table C.1(e) is for welded joints. Both tables were computed for Schedule 
40 pipe sizes; however, for all practical purposes, the same figures can also be used 
for Schedule 80 pipe sizes. 
 
Table C.1(d)  Equivalent Lengths in Feet of Threaded Pipe Fitting  
Pipe   
Size  
(in.) Elbow Std. 45 Degrees Elbow Std. 90 Degrees Elbow 90 Degrees 
Long Radius and Tee Thru Flow Tee   
Side Union Coupling or Gate Valve  
 0.6 1.3 0.8 2.7 0.3  
½ 0.8 1.7 1.0 3.4 0.4  
¾ 1.0 2.2 1.4 4.5 0.5  
1 1.3 2.8 1.8 5.7 0.6  
1¼ 1.7 3.7 2.3 7.5 0.8  
1½ 2.0 4.3 2.7 8.7 0.9  



2 2.6 5.5 3.5 11.2 1.2  
2½ 3.1 6.6 4.1 13.4 1.4  
3 3.8 8.2 5.1 16.6 1.8  
4 5.0 10.7 6.7 21.8 2.4  
5 6.3 13.4 8.4 27.4 3.0  
6 7.6 16.2 10.1 32.8 3.5  
For SI units, 1 ft = 0.3048 m.  
 
 
Table C.1(e)  Equivalent Lengths in Feet of Welded Pipe Fitting  
Pipe   
Size (in.) Elbow Std. 45 Degrees Elbow Std. 90 Degrees Elbow 90 
Degrees Long Radius and Tee Thru Flow Tee   
Side Gate Valve  
 0.2 0.7 0.5 1.6 0.3  
½ 0.3 0.8 0.7 2.1 0.4  
¾ 0.4 1.1 0.9 2.8 0.5  
1 0.5 1.4 1.1 3.5 0.6  
1¼ 0.7 1.8 1.5 4.6 0.8  
1½ 0.8 2.1 1.7 5.4 0.9  
2 1.0 2.8 2.2 6.9 1.2  
2½ 1.2 3.3 2.7 8.2 1.4  
3 3.8 4.1 3.3 10.2 1.8  
4 2.0 5.4 4.4 13.4 2.4  
5 2.5 6.7 5.5 16.8 3.0  
6 3.0 8.1 6.6 20.2 3.5  
For SI units, 1 ft = 0.3048 m.  
 
For nominal changes in elevation of piping, the change in head pressure is negligible. 
However, if there is a substantial change in elevation, this factor should be taken into 
account. The head pressure correction per foot of elevation depends on the average 
line pressure where the elevation takes place because the density changes with 
pressure. Correction factors are given in Table C.1(f) and Table C.1(g) for low-
pressure and high-pressure systems, respectively. The correction is subtracted from 
the terminal pressure when the flow is upward and is added to the terminal pressure 
when the flow is downward. 
 
Table C.1(f)  Elevation Correction Factors for Low-Pressure System  
Average Line Pressure  Elevation Correction  
psi kPa  psi/ft kPa/m  
300 2068  0.443 10.00  
280 1930  0.343 7.76  
260 1792  0.265 5.99  
240 1655  0.207 4.68  
220 1517  0.167 3.78  
200 1379  0.134 3.03  
180 1241  0.107 2.42  
160 1103  0.085 1.92  
140 965  0.067 1.52  
 



 
Table C.1(g)  Elevation Correction Factors for High-Pressure System  
Average Line Pressure  Elevation Correction  
psi kPa  psi/ft kPa/m  
750 5171  0.352 7.96  
700 4826  0.300 6.79  
650 4482  0.255 5.77  
600 4137  0.215 4.86  
550 3792  0.177 4.00  
500 3447  0.150 3.39  
450 3103  0.125 2.83  
400 2758  0.105 2.38  
350 2413  0.085 1.92  
300 268  0.070 1.580  
 
Annex D Total Flooding Systems 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
D.1  
From a performance viewpoint, a total flooding system is designed to develop a 
carbon dioxide concentration that will extinguish fires in combustible materials 
located in an enclosed space. It should also maintain an effective concentration until 
the maximum temperature has been reduced below the re-ignition point. 
For many materials, there can be a need to maintain a concentration of carbon dioxide 
to allow for cooling. Sheet metal ducting that can be heated quickly and substantially 
is an example of where maintaining the concentration for cooling can be necessary. 
 
The concentration of carbon dioxide required will depend on the type of combustible 
material involved. The concentration of carbon dioxide has been accurately 
determined for most surface-type fires, particularly those involving liquids and gases. 
Most of this information has been obtained by the U.S. Bureau of Mines. For deep-
seated fires, the critical concentration required for extinguishment is less definite and 
has in general been established by practical test work. 
The volume of carbon dioxide required to develop a given concentration will be 
greater than the final volume remaining in the enclosure. In most cases, carbon 
dioxide should be applied in a manner that promotes progressive mixing of the 
atmosphere. The displaced atmosphere is exhausted freely from the enclosure through 
various small openings or through special vents, as carbon dioxide is injected. Some 
carbon dioxide is therefore lost with the vented atmosphere. This loss becomes greater 
at high concentrations. This method of application is called free-efflux flooding. 
Under the above conditions, the volume of carbon dioxide required to develop a given 
concentration in the atmosphere is expressed by the following equations: 
 
or 
 
where: 
X = volume of carbon dioxide added per volume of space 
e = 2.718 (natural logarithm base) 
From the preceding equations, the volume of carbon dioxide required to develop a 
given concentration can be calculated. This quantity of carbon dioxide can be 



expressed in terms of cubic feet (cubic meters) of space protected per pound 
(kilogram) of carbon dioxide or pounds (kilograms) of carbon dioxide per 100 ft3 
(0.28 m3). These results have been calculated and plotted for easy reference. 
One such curve is shown on Figure D.1(a). On this curve, it was assumed that the 
carbon dioxide would expand to a volume of 9 ft3/lb (0.56 m3/kg) at a temperature of 
86°F (30°C). The top curve (complete displacement) and the bottom curve (no efflux) 
are theoretical extremes plotted for comparative purposes only. The middle curve 
(free efflux), the curve to be used, must be tempered by proper safety factors. Similar 
information is also given on Figure D.1(b) in the form of a nomograph. Column A 
shows oxygen content of air–carbon dioxide mixtures; Column B shows weights of 
carbon dioxide in air–carbon dioxide mixtures; and Column C shows cubic feet per 
pound of carbon dioxide in air–carbon dioxide mixtures. In this case, it was assumed 
that the final temperature would be about 50°F (10°C), giving a volume of 8.35 ft3/lb 
(0.52 m3/kg) of carbon dioxide. The nomograph therefore indicates somewhat greater 
quantities of carbon dioxide for the same concentration. The data in Chapters 4 
through 6 are based on an expansion of 9 ft3/lb (0.56 m3/kg) of carbon dioxide. It 
should be noted that, in some well-insulated enclosures, such as freezers and anechoic 
test chambers, complete and rapid vaporization of the carbon dioxide discharge might 
not occur. For unusual cases like these, the manufacturer should be consulted. 
 
FIGURE D.1(a)  Carbon Dioxide Requirements for Inert Atmospheres [based on a 
carbon dioxide expansion of 9 ft3/lb (0.56 m3/kg)]. 
 
FIGURE D.1(b)  Carbon Dioxide Requirements for Inert Atmospheres [based on a 
carbon dioxide expansion of 8.35 ft3/lb (0.52 m3/kg)]. 
The time required for cooling below the re-ignition point depends on the type of fire 
and the insulating effect of the combustible material. For surface-type fires, it can be 
assumed that the fire will be extinguished almost as soon as the desired concentration 
is obtained. The enclosure should, of course, retain a reasonable concentration for 
some time after the carbon dioxide has been injected, which provides an additional 
factor of safety. 
For deep-seated fires, the concentration should be maintained for a longer period of 
time because the hot material will cool off slowly. The cooling time will vary 
considerably, depending on the nature of the material. Because the cooling time will 
tend to be long, it is necessary to give considerable attention to the problem of 
maintaining the extinguishing concentration. Surface fires and deep-seated fires are 
basically different and should be approached with somewhat different objectives in 
mind. 
Examples of hazards protected by total flooding systems include rooms, vaults, 
enclosed machines, ducts, ovens, containers, and the contents thereof. 
Annex E Surface Fires 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
E.1  
The requirements given in Section 5.3 take into account the various factors that could 
affect the performance of the carbon dioxide system. The question on limitation of 
unclosable openings is frequently encountered and is difficult to answer in precise 
terms. Because surface fires are normally of the type that can be extinguished with 
local application methods, a choice between total flooding or local application can be 



made on the basis of the quantity of carbon dioxide required. This choice is illustrated 
in the following examples for the enclosure diagrammed in Figure E.1(a). 
 
FIGURE E.1(a)  Diagram of Enclosure for Example 1 and Example 2. 
 
Example 1:   
Volume of space 2000 ft3  
Type of combustible  Gasoline  
Ventilation openings   
 Air outlet near ceiling 5 ft2  
 Air inlet centered at 7 ft below ceiling 5 ft2  
Design concentration (See Table 5.3.2.2.) 34% CO2  
Volume factor [See Table 5.3.3(a).] 18 ft3/lb CO2  
Basic quantity of CO2                                                                                                 
 
Material conversion factor (see 5.3.4): Because the design concentration is not over 
34 percent, no conversion is needed. 
Special conditions (see 5.3.5): Carbon dioxide will be lost through the bottom opening 
while air enters through the top opening. From Figure E.1(b), the loss rate will be 17 
lb/minft2 for a concentration of 34 percent at 7 ft. 
Additional carbon dioxide for openings (see 5.3.5.1): 
17 × 5 = 85 lb 
Total carbon dioxide required:  
111 + 85 = 196 lb 
 
Example 1 (SI units):   
Volume of space 54 m3  
Type of combustible  Gasoline  
Ventilation openings   
 Air outlet near ceiling 0.5 m2  
 Air inlet centered at 2.1 m below ceiling 0.5 m2  
Design concentration (See Table 5.3.2.2.) 34% CO2  
Volume factor [See Table 5.3.3(a).] 1.11 m3/kg CO2  
Basic quantity of CO2         
 
 
FIGURE E.1(b)  Calculated CO2 Loss Rate Based on an Assumed 70°F (21°C) 
Temperature Within the Enclosure and 70°F (21°C) Ambient Outside. 
Material conversion factor (see 5.3.4): Because the design concentration is not over 
34 percent, no conversion is needed. 
Special conditions (see 5.3.5 ): Carbon dioxide will be lost through the bottom 
opening while air enters through the top opening. From Figure E.1(b), the loss rate 
will be 85 kg/minm2 for a concentration of 34 percent at 2.1 m. 
Additional carbon dioxide for openings (see 5.3.5.1): 
85 × 0.5 = 42.5 kg 
Total carbon dioxide required:  
48.6 + 52.5 = 91.1 kg  
 
Example 2:   
Volume of space 2000 ft3  



Type of combustible  Gasoline  
Ventilation openings   
 Air outlet near ceiling 10 ft2  
 Air inlet centered at 7 ft below ceiling 10 ft2  
Design concentration (See Table 5.3.2.2.) 34% CO2  
Basic quantity of CO2         
 
Additional carbon dioxide for openings (see 5.3.5.1): 
17 × 10 = 170 lb 
Total carbon dioxide required:  
111 + 170 = 281 lb 
Because the compensation exceeds the basic flooding requirement (see 5.2.1.1), refer 
to Chapter 6. Using the rate-by-volume method, 6.5.3.2 states that the rate of 
discharge can be reduced to not less than 0.25 lb/minft3 for actual walls completely 
surrounding the hazard enclosure. The openings can be calculated as a percentage of 
wall enclosure to determine a proper discharge rate. The total opening area is 20 ft2. 
Total wall area: (10 + 10 + 20 + 20) × 10 = 600 ft2 
Rate of discharge: 
 
Total rate of discharge:  
0.27 × 2000 = 540 lb/min 
Quantity of carbon dioxide: 
 
Local application requires a liquid discharge for 30 seconds. In the case of high-
pressure storage, the quantity of carbon dioxide must be increased by 40 percent (see 
6.3.1.1) to ensure a 30-second discharge of liquid. When the openings are increased to 
20 ft2 each, local application techniques will require less carbon dioxide than total 
flooding for both low-pressure and high-pressure storage. 
 
Example 2 (SI units):   
Volume of space 54 m3  
Type of combustible  Gasoline  
Ventilation openings   
 Air outlet near ceiling 1.0 m2  
 Air inlet centered at 2.1 m below ceiling 1.0 m2  
Design concentration (See Table 5.3.2.2.) 34% CO2  
Basic quantity of CO2         
 
Additional carbon dioxide for openings (see 5.3.5.1): 
85 × 1.0 = 85 kg 
Total carbon dioxide required:  
48.6 + 85 = 133.6 kg 
Because the compensation exceeds the basic flooding requirement (see 5.2.1.1), refer 
to Chapter 6. Using the rate-by-volume method, 6.5.3.2 states that the rate of 
discharge can be reduced to not less than 4 kg/minm3 for actual walls completely 
surrounding the hazard enclosure. The openings can be calculated as a percentage of 
wall enclosure to determine a proper discharge rate. The total opening area is 2.0 m2. 
Total wall area: (3 + 3 + 6 + 6) × 3 = 54 m2 
Rate of discharge: 
 



Total rate of discharge: 
 4.4 × 54 = 237.6 kg/minm3 
Quantity of carbon dioxide: 
 
Local application requires a liquid discharge for 30 seconds. In the case of high-
pressure storage, the quantity of carbon dioxide must be increased by 40 percent (see 
6.3.1.1) to ensure a 30-second discharge of liquid. When the openings are increased to 
2.0 m2 each, local application techniques will require less carbon dioxide than total 
flooding for both low-pressure and high-pressure storage. 
Annex F Local Application Carbon Dioxide Systems 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
F.1  
A local application carbon dioxide system is designed to apply carbon dioxide directly 
to a fire that can occur in an area or space that essentially has no enclosure 
surrounding it. Such systems should be designed to deliver carbon dioxide to the 
hazard being protected in a manner that will cover or surround all burning or flaming 
surfaces with carbon dioxide during operation of the system. 
The flow rate and time of application required will depend on the type of combustible 
material involved, the nature of the hazard (whether it is a liquid surface such as a dip 
tank or quench tank or a complicated piece of machinery such as a printing press), and 
the location and spacing of the carbon dioxide nozzles with respect to the hazard. 
The important factors to be considered in the design of a local application system are 
the rate of flow, the height and area limitations of the nozzles used, the amount of 
carbon dioxide needed, and the piping system. The following steps are necessary to 
lay out a system:                                                  
(1)  Determine the area of the hazard to be protected. In determining this area, it is 
important to lay out to scale the actual hazard, showing all dimensions and limitations 
as to placement of nozzles. The limits of the hazard should be carefully defined to 
include all combustibles that can be included in the hazard, and the possibility of 
stock or other obstructions that can be in or near the hazard should be carefully 
considered. 
(2)  For overhead-type nozzles, based on the height limitations of the hazard to be 
protected, lay out the nozzles to cover the hazard by using various nozzles within the 
height and area limitations that are expressed in the listings or approvals of these 
nozzles. The limits on area coverage of a nozzle for a particular height will be 
determined from listing information, which is presented in a form similar to that 
shown in Figure F.1(a). In considering the area that is covered by a particular nozzle, 
it is important to remember that all nozzle coverage is laid out on the basis of 
approximate squares. Omit this step for tankside or linear-type nozzles. 
(3)  Based on the height above the hazard of each nozzle, determine the optimum 
flow rate at which each nozzle should discharge to extinguish the hazard being 
protected. This is determined from a curve such as the one shown in Figure F.1(b), 
given in the individual listings or approvals of nozzles. For tankside or linear nozzles, 
based on the configuration of the hazard, lay out the nozzles to cover the hazard 
within the spacing limitations expressed in approvals or listings. Based on the spacing 
or area coverage, select an appropriate flow rate from an approval or listing curve 
such as the ones shown by Figure F.1(c) and Figure F.1(d). Omit this step for 
overhead-type nozzles. 



(4)  Determine the discharge time for the hazard. This time will always be a 
minimum of 30 seconds, but it can be longer, depending on such factors as the nature 
of the material in the hazard and the possibility that some hot spots can require longer 
cooling. 
(5)  Add the flow rates of the individual nozzles to determine the total flow rate 
and multiply this sum by the duration of discharge to determine the total quantity of 
carbon dioxide needed to protect the hazard. Then multiply that number by 1.4 (for 
high-pressure systems) to obtain total capacity of storage cylinders. 
(6)  Locate the storage tank or cylinders and lay out the piping connecting the 
nozzles and storage containers. 
(7)  Starting from the storage cylinders, compute the pressure drop through the 
system piping to each nozzle to obtain the terminal pressure at each nozzle. (See C.1.) 
Be sure to allow for equivalent lengths of pipe for various fittings and system 
components. Equivalent lengths of system components are found in individual listings 
or approvals of these components. Assume 750 psi (5171 kPa) storage conditions for 
high-pressure storage and 300 psi (2068 kPa) storage conditions for low-pressure 
storage of carbon dioxide. For the initial layout, it is necessary to assume sizes of the 
piping at various points in the system. After going through the computations to 
determine the nozzle pressures, it could be necessary to adjust these pipe sizes up or 
down to obtain higher or lower nozzle pressures so that a proper flow rate can be 
achieved. 
(8)  Based on the nozzle pressures from step (7) and the individual nozzle flow 
rates from step (3), select an equivalent orifice that comes closest to the area that 
produces the design flow rate using Table 4.7.5.2.1, Table 4.7.5.3.1, and Table 
A.4.7.4.4.3.                                                
 
FIGURE F.1(a)  Listing or Approval Curve of a Typical Nozzle Showing Maximum 
Area Versus Height or Distance from Liquid Surface. 
 
FIGURE F.1(b)  Listing or Approval Curve of a Typical Nozzle Showing Design 
Flow Rate Versus Height or Distance from Liquid Surface. 
 
FIGURE F.1(c)  Typical Listing or Approval Curve of a Tankside Nozzle Showing 
Flow Rate Versus Area Coverage. 
 
FIGURE F.1(d)  Typical Listing or Approval Curve of a Linear Nozzle Showing Flow 
Rate Versus Hazard Width. 
Annex G General Information on Carbon Dioxide 
This annex is not a part of the requirements of this NFPA document but is included 
for informational purposes only. 
G.1  
Carbon dioxide is present in the atmosphere at an average concentration of about 0.03 
percent by volume. It is also a normal end product of human and animal metabolism. 
Carbon dioxide influences certain vital functions in a number of important ways, 
including control of respiration, dilation, and constriction of the vascular system — 
particularly the cerebrum — and the pH of body fluids. The concentration of carbon 
dioxide in the air governs the rate at which carbon dioxide is released from the lungs 
and thus affects the concentration of carbon dioxide in the blood and tissues. An 
increasing concentration of carbon dioxide in air can, therefore, become dangerous 
due to a reduction in the rate of release of carbon dioxide from the lungs and 



decreased oxygen intake. [Further details of carbon dioxide exposure can be obtained 
from DHHS (NIOSH) Publication No. 76-194.] Personnel safety considerations are 
covered in Section 4.3. 
Table G.1 provides information on acute health effects of high concentrations of 
carbon dioxide. 
 
Table G.1  Acute Health Effects of High Concentrations of Carbon Dioxide (with 
Increasing Exposure Levels of Carbon Dioxide)  
Concentration of Carbon Dioxide in Air (%) Time Effects  
2 Several hours Headache, dyspnea upon mild exertion  
3 1 hour Dilation of cerebral blood vessels, increased pulmonary ventilation, 
and increased oxygen delivery to the tissues  
4–5 Within a few minutes Mild headache, sweating, and dyspnea at rest  
6 1–2 minutes Hearing and visual disturbances  
 <16 minutes Headache and dyspnea  
 Several hours Tremors  
7–10 Few minutes Unconsciousness or near unconsciousness  
 1.5 minutes–  
1 hour Headache, increased heart rate, shortness of breath, dizziness, sweating, rapid 
breathing  
10–15 1+ minute Dizziness, drowsiness, severe muscle twitching, and 
unconsciousness  
17–30 <1 minute Loss of controlled and purposeful activity, unconsciousness, 
convulsions, coma, and death  
Source: EPA 430-R-00-002, “Carbon Dioxide as a Fire Suppressant: Examining the 
Risks,” February 2000.  
 
Carbon dioxide is a standard commercial product with many uses. It is perhaps most 
familiar as the gas that gives the “fizz” in soda pop and other carbonated beverages. In 
industrial applications, it is used for its chemical properties, its mechanical properties 
as a pressurizing agent, or its refrigerating properties as dry ice. 
For fire-extinguishing applications, carbon dioxide has a number of desirable 
properties. It is noncorrosive, nondamaging, and leaves no residue to clean up after 
the fire. It provides its own pressure for discharge through pipes and nozzles. Because 
it is a gas, it will penetrate and spread to all parts of a hazard. It will not conduct 
electricity and can therefore be used on live electrical hazards. It can effectively be 
used on practically all combustible materials except for a few active metals and metal 
hydrides and materials, such as cellulose nitrate, that contain available oxygen. 
Under normal conditions, carbon dioxide is an odorless, colorless gas with a density 
about 50 percent greater than the density of air. Many people insist they can detect an 
odor of carbon dioxide, but this could be due to impurities or chemical effects in the 
nostrils. Carbon dioxide is easily liquefied by compression and cooling. By further 
cooling and expansion, it can be converted to the solid state. 
The relationship between the temperature and the pressure of liquid carbon dioxide is 
shown on the curve given in Figure G.1. As the temperature of the liquid increases, 
the pressure also increases. As the pressure increases, the density of the vapor over the 
liquid increases. On the other hand, the liquid expands as the temperature goes up and 
its density decreases. At 87.8°F (31°C), the liquid and the vapor have the same 
density, and of course the liquid phase disappears. This is called the critical 
temperature for carbon dioxide. Below the critical temperature [87.8°F (31°C)], 



carbon dioxide in a closed container is part liquid and part gas. Above the critical 
temperature, it is entirely gas. 
 
FIGURE G.1  Variation of Pressure of Carbon Dioxide with Change in Temperature 
(constant volume). 
An unusual property of carbon dioxide is the fact that it cannot exist as a liquid at 
pressures below 60.4 psi [75 psi absolute (517 kPa)]. This is the triple point pressure 
where carbon dioxide could be present as a solid, a liquid, or a vapor. Below this 
pressure, it must be either a solid or a gas, depending on the temperature. 
If the pressure in a storage container is reduced by bleeding off vapor, some of the 
liquid will vaporize and the remaining liquid will become colder. At 60.4 psi [75 psi 
absolute (517 kPa)], the remaining liquid will be converted to dry ice at a temperature 
of -69.9°F (-57°C). Further reduction in the pressure to atmospheric will lower the 
temperature of the dry ice to the normal -109.3°F (-79°C). 
The same process takes place when liquid carbon dioxide is discharged to the 
atmosphere. A large portion of the liquid flashes to vapor with a considerable increase 
in volume. The rest is converted to finely divided particles of dry ice at -109.3°F (-
79°C). It is this dry ice or snow that gives the discharge its typical white cloudy 
appearance. The low temperature also causes the condensation of water from the 
entrained air so that ordinary water fog tends to persist for a while after the dry ice has 
sublimed. 
Carbon dioxide is a colorless, odorless, electrically nonconductive inert gas that is a 
suitable medium for extinguishing fires. Liquid carbon dioxide forms solid dry ice 
(“snow”) when released directly into the atmosphere. Carbon dioxide gas is 1.5 times 
heavier than air. Carbon dioxide extinguishes fire by reducing the concentrations of 
oxygen, the vapor phase of the fuel, or both in the air to the point where combustion 
stops. (See Section 4.3.) 
Carbon dioxide fire-extinguishing systems are useful within the limits of this standard 
in extinguishing fires involving specific hazards or equipment in the following 
occupancies:                                                  
(1)  Where an inert electrically nonconductive medium is essential or desirable 
(2)  Where cleanup of other media presents a problem 
(3)  Where such systems are more economical to install than systems using other 
media                                                
Some of the types of hazards and equipment that carbon dioxide systems can 
satisfactorily protect include the following:                                                  
(1)  Flammable liquid materials (See 4.5.4.8.) 
(2)  Electrical hazards such as transformers, switches, circuit breakers, rotating 
equipment, and electronic equipment 
(3)  Engines utilizing gasoline and other flammable liquid fuels 
(4)  Ordinary combustibles such as paper, wood, and textiles 
(5)  Hazardous solids                                                
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